ÌâÄ¿ÄÚÈÝ
9£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãPΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ$|P{F_2}|=\frac{5}{3}$£®£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýF2ÇÒÓë×ø±êÖá²»´¹Ö±µÄÖ±Ïß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬ÈôÏß¶ÎOF2ÉÏ´æÔÚ¶¨µãT£¨t£¬0£©Ê¹µÃÒÔTM¡¢TNΪÁڱߵÄËıßÐÎÊÇÁâÐΣ¬ÇótµÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÓÒ½¹µãÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãPΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ$|P{F_2}|=\frac{5}{3}$£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©ÉèMNÖеãΪD£¨x0£¬y0£©£¬ÓÉÌâÒâÖªTD¡ÍMN£¬ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬ÁªÁ¢$\left\{\begin{array}{l}x=my+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬µÃ£¨3m2+4£©y2+6my-9=0£¬ÓɸùµÄÅжÏʽ¡¢Î¤´ï¶¨Àí¡¢Ö±Ïß´¹Ö±£¬½áºÏÒÑÖªÌõ¼þ£¬ÄÜÇó³ötµÄȡֵ£®
½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßy2=4xµÄ½¹µãΪ£¨1£¬0£©£¬$|P{F_2}|={x_p}+1=\frac{5}{3}$£¬¡à${x_p}=\frac{2}{3}$£¬
¡à${y_p}=\frac{2}{3}\sqrt{6}$£¬¡à$P£¨\frac{2}{3}£¬\frac{2}{3}\sqrt{6}£©$£¬
ÓÖF2£¨1£¬0£©£¬¡àF1£¨-1£¬0£©£¬
¡à$|P{F_1}|+|P{F_2}|=\frac{7}{3}+\frac{5}{3}=4$£¬¡àa=2£¬
ÓÖ¡ßc=1£¬¡àb2=a2-c2=3£¬
¡àÍÖÔ²·½³ÌÊÇ£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£©ÉèMNÖеãΪD£¨x0£¬y0£©£¬¡ßÒÔTM¡¢TNΪÁڱߵÄËıßÐÎÊÇÁâÐΣ¬
¡àTD¡ÍMN£¬
ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬
ÁªÁ¢$\left\{\begin{array}{l}x=my+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬ÕûÀíµÃ£¨3m2+4£©y2+6my-9=0£¬
¡ßF2ÔÚÍÖÔ²ÄÚ£¬¡à¡÷£¾0ºã³ÉÁ¢£¬
¡à${y_1}+{y_2}=\frac{-6m}{{3{m^2}+4}}$£¬
¡à${y_0}=\frac{-3m}{{3{m^2}+4}}$£¬¡à${x_0}=m{y_0}+1=\frac{4}{{3{m^2}+4}}$£¬
¡àkTD•kMN=-1£¬¼´$\frac{{\frac{-3m}{{3{m^2}+4}}}}{{\frac{4}{{3{m^2}+4}}-t}}=-m$£¬
ÕûÀíµÃ$t=\frac{1}{{3{m^2}+4}}$£¬
¡ßm2£¾0£¬¡à3m2+4¡Ê£¨4£¬+¡Þ£©£¬¡à$t¡Ê£¨0£¬\frac{1}{4}£©$£¬
¡àtµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{1}{4}£©$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éʵÊýµÄȡֵ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Ö±ÏßÓëÍÖԲλÖùØÏµ¡¢Î¤´ï¶¨ÀíµÄºÏÀíÔËÓã®
| A£® | $[{\frac{7¦Ð}{12}£¬\frac{13¦Ð}{12}}]$ | B£® | $[{\frac{¦Ð}{12}£¬\frac{7¦Ð}{12}}]$ | C£® | $[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$ | D£® | $[{-\frac{5¦Ð}{6}£¬\frac{¦Ð}{6}}]$ |
| A£® | Ò» | B£® | ¶þ | C£® | Èý | D£® | ËÄ |
| x | 1 | 2 | 3 | 4 | 5 |
| y | 3 | 5 | 7 | 10 | 11 |
£¨2£©ÅжϱäÁ¿xÓëyÖ®¼äÊÇÕýÏà¹Ø»¹ÊǸºÏà¹Ø£¬²¢Ô¤²âµ±Î¶ȵ½´ï10¡æÊ±·´Ó¦½á¹ûΪ¶àÉÙ£¿
¸½£ºÏßÐԻع鷽³ÌÖÐ$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-b$\overline{x}$£®