题目内容
设数列{an}的前n项和为Sn,且an+Sn=1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=
+1,又cn=
,且数列{cn}的前n项和为Tn,求证:Tn<
.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=
| 1 |
| an |
| 1 |
| an+1bnbn+1 |
| 2 |
| 3 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由an+Sn=1,得an-1+Sn-1=1(n≥2),a1+S1=1,由此能求出数列{an}是首项为
,公比为
的等比数列,从百求出an=
.
(2)由(1)知bn=
+1=2n+1,所以cn=
=2(
-
),由此利用裂项求和法能证明Tn<
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
(2)由(1)知bn=
| 1 |
| an |
| 1 |
| an+1bnbn+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
| 2 |
| 3 |
解答:
(1)解:由an+Sn=1,得an-1+Sn-1=1(n≥2),
两式相减并整理得
=
(n≥2),
又a1+S1=1,解得a1=
,
∴数列{an}是首项为
,公比为
的等比数列,
∴an=
.
(2)证明:由(1)知bn=
+1=2n+1,
∴cn=
=
=2(
-
),
∴Tn=2(
-
+
-
+…+
-
)
=2(
-
)<
.
∴Tn<
.
两式相减并整理得
| an |
| an-1 |
| 1 |
| 2 |
又a1+S1=1,解得a1=
| 1 |
| 2 |
∴数列{an}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2n |
(2)证明:由(1)知bn=
| 1 |
| an |
∴cn=
| 1 |
| an+1bnbn+1 |
| 2n+1 |
| (2n+1)(2n+1+1) |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
∴Tn=2(
| 1 |
| 2+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 23+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=2(
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
| 2 |
| 3 |
∴Tn<
| 2 |
| 3 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目