题目内容
10.已知命题p:(x-4)2≤36,q:x2-2x+1-a2≥0(a>0),若¬p是q的充分不必要条件,求a的取值范围.分析 求出命题的等价条件,利用充分条件和必要条件的定义进行求解即可.
解答 解:由(x-4)2≤36得-6≤x-4≤6,即-2≤x≤10,即p:-2≤x≤10,¬p:x≥10或x≤-2,
由x2-2x+1-a2≥0(a>0),得x≥a+1或x≤1-a,即q:x≥a+1或x≤1-a,
若¬p是q的充分不必要条件,
则$\left\{\begin{array}{l}{a+1≤0}\\{1-a≥-2}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤-1}\\{a≤3}\end{array}\right.$,
解得a≤-1.
点评 本题主要考查充分条件和必要条件的应用,根据不等式的解法求出命题的等价条件是解决本题的关键.
练习册系列答案
相关题目
19.已知$\frac{1}{x}$+$\frac{1}{y}$=1,且x>0,y>0,则$\frac{16x}{x-1}$+$\frac{4y}{y-1}$的最小值为( )
| A. | 16 | B. | 24 | C. | 36 | D. | 48 |
9.函数y=cos2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,与函数y=sin(2x-$\frac{π}{6}$)的图象重合,则φ=( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |