题目内容
设ξ是离散型随机变量,P(ξ=x1)=,P(ξ=x2)=,且x1<x2,又已知E(ξ)=,D(ξ)=,则x1+x2的值为( )
A. B. C.3 D.
C
已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:
①f(2 013)+f(-2 014)的值为0;
②函数f(x)在定义域上为周期是2的周期函数;
③直线y=x与函数f(x)的图象有1个交点;
④函数f(x)的值域为(-1,1).
其中正确命题的序号有________.
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x.若对任意的x∈[a,a+2],不等式f(x+a)≥f2(x)恒成立,则实数a的取值范围是________.
下列结论中:
①函数y=x(1-2x)(x>0)有最大值;
②函数y=2-3x-(x<0)有最大值2-4;
③若a>0,则(1+a)≥4.
正确结论的序号是________.
甲、乙两名棋手比赛正在进行中,甲必须再胜2盘才最后获胜,乙必须再胜3盘才最后获胜,若甲、乙两人每盘取胜的概率都是,则甲最后获胜的概率是( )
A. B. C. D.
如图,矩形OABC内的阴影部分由曲线f(x)=sin x及直线x=a(a∈(0,2π))与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a=________.
前不久,省社科院发布了2013年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.
设等差数列{an}的前n项和为Sn,已知a1=2,S6=22.
(1)求Sn的表达式;
(2)若从{an}中抽取一个公比为q的等比数列{akn},其中k1=1,且k1<k2<…<kn(kn∈N*).
①当q取最小值时,求{kn}的通项公式;
②若关于n(n∈N*)的不等式6Sn>kn+1有解,试求q的值.
某几何体的三视图如图所示,则该几何体的体积的最大值为( )
A.1 B. C. D.