题目内容
18.齐王与田忌赛马,每人各有三匹马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,共进行三场比赛,每次各派一匹马进行比赛,马不能重复使用,三场比赛全部比完后胜利场次多者为胜,则田忌获胜的概率为( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
分析 由题意知基本事件总数n=${A}_{3}^{3}$=6,再由列举法求出田忌获胜包含的基本事件个数,由此能出田忌获胜的概率.
解答 解:由题意知基本事件总数n=${A}_{3}^{3}$=6,
田忌获胜包含的基本事件为:
田忌的下等马对阵齐王的上等马,田忌的上等马对阵齐王的中等马,田忌的中等马对阵齐王的下等马,
∴田忌获胜的概率p=$\frac{1}{6}$.
故选:D.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
6.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,点A(c,b),右焦点F(c,0),椭圆上存在一点M,使得$\overrightarrow{OM}•\overrightarrow{OA}=\overrightarrow{OF}•\overrightarrow{OA}$,且$\overrightarrow{OM}+\overrightarrow{OF}=t\overrightarrow{OA}({t∈R})$,则该椭圆的离心率为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
13.已知函数f(x)的定义域是R,f(0)=2,对任意x∈R,f′(x)>f(x)+1,则下列正确的为( )
| A. | (f(1)+1)•e>f(2)+1 | B. | 3e<f(2)+1 | ||
| C. | 3•e≥f(1)+1 | D. | 3e2与f(2)+1大小不确定 |
3.在△ABC中,O为其内部一点,且满足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,则△AOB和△AOC的面积比是( )
| A. | 3:4 | B. | 3:2 | C. | 1:1 | D. | 1:3 |
8.若i为虚数单位,则复数$\frac{1+i}{3-i}$等于( )
| A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | $\frac{1}{4}+\frac{1}{2}i$ | C. | $\frac{2}{5}+\frac{2}{5}i$ | D. | $\frac{1}{5}+\frac{2}{5}i$ |