题目内容
14.双曲线C:$\frac{x^2}{4}-{y^2}=1$的离心率是$\frac{\sqrt{5}}{2}$,焦距是2$\sqrt{5}$.分析 求得双曲线的a,b,c,由离心率公式e=$\frac{c}{a}$,焦距2c,即可得到所求值.
解答 解:双曲线C:$\frac{x^2}{4}-{y^2}=1$的a=2,b=1,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$,
可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,焦距2c=2$\sqrt{5}$.
故答案为:$\frac{{\sqrt{5}}}{2}$,$2\sqrt{5}$.
点评 本题考查双曲线的离心率和焦距的求法,注意运用离心率公式和a,b,c关系,考查运算能力,属于基础题.
练习册系列答案
相关题目
5.若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过等腰梯形ABCD的上底的两个顶点C、D,下底的两个顶点A、B分别为双曲线的左、右焦点,对角线AC与双曲线的左支交于点E,且3|AE|=2|EC|,|AB|=2|CD|,则该双曲线的离心率是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
19.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F1(0,-c)(c>0),离心率为e,过F1平行于双曲线渐近线的直线与圆x2+y2=c2交于另一点P,且点P在抛物线x2=4cy上,则e2=( )
| A. | $\frac{\sqrt{5}+2}{2}$ | B. | $\frac{\sqrt{5}+2}{3}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{5}+1}{3}$ |
3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O为平面内任意一点,则下列各式成立的是( )
| A. | $\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$ | B. | $\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$ | C. | $\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$ | D. | $\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$ |