题目内容

7.在150米高的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°,60°x=0,则塔高为(  )
A.50米B.75米C.100米D.125米

分析 如图,设AB为山,CD为塔,Rt△ABD中利用正弦的定义,算出BD=100$\sqrt{3}$米.在△BCD中,得到∠C=120°、∠DBC=30°,利用正弦定理列式,解出CD=100米,即塔高为100米.

解答 解:如图,设AB为山,CD为塔,则
Rt△ABD中,∠ADB=60°,AB=150米
∴BD=100$\sqrt{3}$米
在△BCD中,∠BDC=90°-60°=30°,∠DBC=60°-30°=30°,
∴∠C=180°-30°-30°=120°
由正弦定理,得CD=$\frac{100\sqrt{3}}{sin120°}×sin30°$=100米,即塔高为100米
故选C.

点评 本题给出实际问题,求距离山远处的一个塔的高,着重考查了直角三角形三角函数的定义和正弦定理解三角形等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网