ÌâÄ¿ÄÚÈÝ

3£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=sin¦È-cos¦È}\\{y=sin2¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£»ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¨¦ÈΪ³£Êý£©£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì¼°C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßC2Óë×ø±êÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬PΪÇúÏßC1Éϵ͝µãÇó¡÷PABÃæ»ýµÄ·¶Î§£®

·ÖÎö £¨1£©½«C1²ÎÊý·½³ÌµÄµÚһʽƽ·½ºÍµÚ¶þʽÏà¼ÓÏûÈ¥²ÎÊý¼´¿ÉµÃ³öÆÕͨ·½³Ì£¬½«C2µÄ¼«×ø±ê·½³ÌÕ¹¿ª£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³ö|AB|£¬Çó³öPµ½Ö±ÏßC2µÄ×î¶Ì¾àÀë¼´¿ÉµÃ³öÈý½ÇÐÎÃæ»ýµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ß$\left\{\begin{array}{l}{x=sin¦È-cos¦È}\\{y=sin2¦È}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{x}^{2}=1-2sin¦È}\\{y=sin2¦È}\end{array}\right.$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪx2+y=1£®¼´y=-x2+1£®
¡ß¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬¡à¦Ñcos¦È+¦Ñsin¦È=2£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx+y-2=0£®
£¨2£©A£¨2£¬0£©£¬B£¨0£¬2£©£®¡à|AB|=2$\sqrt{2}$£®
ÉèÇúÏßC1£ºy=-x2+1µÄбÂʶÔÓÚ-1µÄÇÐÏß·½³ÌΪy=-x+b£¬
ÇеãΪ£¨x0£¬y0£©£¬Ôò$\left\{\begin{array}{l}{-2{x}_{0}=-1}\\{{y}_{0}=-{x}_{0}+b}\\{{y}_{0}=-{{x}_{0}}^{2}+1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=\frac{1}{2}}\\{{y}_{0}=\frac{3}{4}}\\{b=\frac{5}{4}}\end{array}\right.$£®
¡àPµ½Ö±ÏßC2µÄ×îС¾àÀëd=$\frac{\frac{3}{4}}{\sqrt{2}}$=$\frac{3\sqrt{2}}{8}$£®
¡à¡÷PABµÄ×îÐ¡Ãæ»ýΪSmin=$\frac{1}{2}¡Á2\sqrt{2}¡Á\frac{3\sqrt{2}}{8}$=$\frac{3}{4}$£®
¡à¡÷PABÃæ»ýµÄ·¶Î§ÊÇ£º[$\frac{3}{4}$£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø