题目内容
1.已知a≠b且满足a2-a-$\sqrt{2}$=0,b2-b-$\sqrt{2}$=0,则点P(a,b)与圆C:x2+y2=8的位置关系是点在圆内.(填“点在圆内”、“点在圆上”或“点在圆外”)分析 由已知得a,b是方程${x}^{2}-x-\sqrt{2}=0$的两个实数根,解方程${x}^{2}-x-\sqrt{2}=0$,求出a,b,把点P代入圆C的方程,能得到点P(a,b)与圆C:x2+y2=8的位置关系.
解答 解:∵a≠b且满足a2-a-$\sqrt{2}$=0,b2-b-$\sqrt{2}$=0,
∴a,b是方程${x}^{2}-x-\sqrt{2}=0$的两个实数根,
假设a<b,解方程${x}^{2}-x-\sqrt{2}=0$,得$a=\frac{1-\sqrt{1+4\sqrt{2}}}{2}$,b=$\frac{1+\sqrt{1+4\sqrt{2}}}{2}$,
∵a2+b2=$\frac{1+4\sqrt{2}-2\sqrt{1+4\sqrt{2}}}{4}$+$\frac{1+4\sqrt{2}+2\sqrt{1+4\sqrt{2}}}{4}$=$\frac{1+4\sqrt{2}}{2}$<8,
∴点P(a,b)与圆C:x2+y2=8的位置关系是点在圆内.
故答案为:点在圆内.
点评 本题考查点与圆的位置关系的判断,是基础题,解题时要认真审题,注意圆的性质的合理运用.
练习册系列答案
相关题目
12.cos20°cos70°-sin160°sin70°=( )
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
16.某市对在职的91名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:
附表:
给出相关公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(12×23-22×34)2=222784,34×57×46×45=4011660.
参照附表,下列结论中正确的是( )
| 支持新教材 | 支持旧教材 | 合计 | |
| 教龄在10年以上的教师 | 12 | 34 | 46 |
| 教龄在10年以下的教师 | 22 | 23 | 45 |
| 合计 | 34 | 57 | 91 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
(12×23-22×34)2=222784,34×57×46×45=4011660.
参照附表,下列结论中正确的是( )
| A. | 在犯错误的概率不超过0.001的前提下,认为“教龄的长短与支持新教材有关” | |
| B. | 在犯错误的概率不超过0.05的前提下,认为“教龄的长短与支持新教材有关” | |
| C. | 在犯错误的概率不超过0.010的前提下,认为“教龄的长短与支持新教材有关” | |
| D. | 我们没有理由认为“教龄的长短与支持新教材有关” |
13.已知不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$表示的平面区域为D,若D内存在一点P(x0,y0),使ax0+y0<1,则a的取值范围为( )
| A. | (-∞,2) | B. | (-∞,1) | C. | (2,+∞) | D. | (1,+∞) |