题目内容
已知平面向量
=(sinx,cosx),
=(sinx,-cosx),
=(-cosx,-sinx),x∈R,函数f(x)=
•(
-
).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若f(
)=
,求sinα的值.
| a |
| b |
| c |
| a |
| b |
| c |
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若f(
| α |
| 2 |
| ||
| 2 |
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值
分析:(Ⅰ)由向量和三角函数的运算可得f(x)=
sin(2x-
)由2kπ+
≤2x-
≤2kπ+
解不等式可得;
(Ⅱ)由题意可得sin(α-
)=
,可得cos(α-
)=±
,而sinα=sin[(α-
)+
]=
sin(α-
)+
cos(α-
),分类讨论代入计算可得.
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
(Ⅱ)由题意可得sin(α-
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
解答:
解:(Ⅰ)∵
=(sinx,cosx),
=(sinx,-cosx),
=(-cosx,-sinx),
∴
-
=(sinx+cosx,sinx-cosx),
∴f(x)=
•(
-
)=sinx(sinx+cosx)+cosx(sinx-cosx)
=sin2x+2sinxcosx-cos2x=sin2x-cos2x=
sin(2x-
)
由2kπ+
≤2x-
≤2kπ+
可解得kπ+
≤x≤kπ+
,
∴函数f(x)的单调递减区间是为[kπ+
,kπ+
],k∈Z;
(Ⅱ)由(Ⅰ)知f(x)=
sin(2x-
),
由f(
)=
可得
sin(α-
)=
,∴sin(α-
)=
,
又∵sin2(α-
)+cos2(α-
)=1,∴cos(α-
)=±
,
sinα=sin[(α-
)+
]=
sin(α-
)+
cos(α-
),
∴当cos(α-
)=
时,sinα=
×
+
×
=
当cos(α-
)=-
时,sinα=
×
-
×
=
| a |
| b |
| c |
∴
| b |
| c |
∴f(x)=
| a |
| b |
| c |
=sin2x+2sinxcosx-cos2x=sin2x-cos2x=
| 2 |
| π |
| 4 |
由2kπ+
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| 3π |
| 8 |
| 7π |
| 8 |
∴函数f(x)的单调递减区间是为[kπ+
| 3π |
| 8 |
| 7π |
| 8 |
(Ⅱ)由(Ⅰ)知f(x)=
| 2 |
| π |
| 4 |
由f(
| α |
| 2 |
| ||
| 2 |
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
又∵sin2(α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
sinα=sin[(α-
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
∴当cos(α-
| π |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||||
| 4 |
当cos(α-
| π |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||||
| 4 |
点评:本题考查三角函数恒等变换,涉及三角函数的单调性和和差角的三角函数以及分类讨论的思想,属中档题.
练习册系列答案
相关题目
已知两非零向量
=(a1,b1),
=(a2,b2),其中a1,a2,b1,b2均为实数,集合A={x|a1x+b1≥0},集合B={x|a2x+b2≥0},则“
∥
”是“A=B”的( )
| a |
| b |
| a |
| b |
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充要条件 |
| D、既非充分又非必要条件 |
已知O是等边△ABC边AC上的一点,且|
|=2|
|=2,点D满足
+
=2
,则
•
=( )
| AB |
| OD |
| OA |
| OB |
| OD |
| AO |
| OD |
A、-
| ||
B、
| ||
C、-
| ||
D、
|