ÌâÄ¿ÄÚÈÝ
14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ë«ÇúÏßEµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{cos¦È}}\\{y=tan¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÉèEµÄÓÒ½¹µãΪF£¬¾¹ýµÚÒ»ÏóÏ޵Ľ¥½øÏßΪl£®ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©Éè¹ýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáÏཻÓÚµãA£¬PÊÇlÉÏÒìÓÚÔµãOµÄµã£¬µ±A£¬O£¬F£¬PËĵãÔÚͬһԲÉÏʱ£¬ÇóÕâ¸öÔ²µÄ¼«×ø±ê·½³Ì¼°µãPµÄ¼«×ø±ê£®
·ÖÎö £¨1£©ÓÉË«ÇúÏßEµÄ²ÎÊý·½³ÌÇó³öË«ÇúÏßEµÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}-{y}^{2}=1$£®´Ó¶øÇó³öÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³Ì£¬ÓÉ´ËÄÜÇó³ölµÄ¼«×ø±ê·½³Ì£®
£¨2£©ÓÉÌâÒâA¡¢O¡¢F¡¢PËĵ㹲ԲµÈ¼ÛÓÚPÊǵãA£¬O£¬FÈ·¶¨µÄÔ²£¨¼ÇΪԲC£¬CΪԲÐÄ£©ÓëÖ±ÏßlµÄ½»µã£¨ÒìÓÚÔµãO£©£¬Ïß¶ÎAFΪԲCµÄÖ±¾¶£¬AÊǹýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáµÄ½»µã£¬´Ó¶øCµÄ°ë¾¶Îª2£¬Ô²Ðĵļ«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬ÓÉ´ËÄÜÇó³öµãPµÄ¼«×ø±ê£®
½â´ð ½â£º£¨1£©¡ßË«ÇúÏßEµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{cos¦È}}\\{y=tan¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\frac{{x}^{2}}{3}=\frac{1}{co{s}^{2}¦È}$£¬${y}^{2}=ta{n}^{2}¦È=\frac{si{n}^{2}¦È}{co{s}^{2}¦È}$£¬
¡à$\frac{{x}^{2}}{3}-{y}^{2}$=$\frac{1}{co{s}^{2}¦È}-\frac{si{n}^{2}¦È}{co{s}^{2}¦È}$=1£¬
¡àË«ÇúÏßEµÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}-{y}^{2}=1$£®
¡àÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³ÌΪy=$\frac{\sqrt{3}}{3}x$£¬Æä¹ýԵ㣬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬
¡àlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{6}$£®
£¨2£©ÓÉÌâÒâA¡¢O¡¢F¡¢PËĵ㹲ԲµÈ¼ÛÓÚPÊǵãA£¬O£¬FÈ·¶¨µÄÔ²£¨¼ÇΪԲC£¬CΪԲÐÄ£©ÓëÖ±ÏßlµÄ½»µã£¨ÒìÓÚÔµãO£©£¬
¡ßAO¡ÍOF£¬¡àÏß¶ÎAFΪԲCµÄÖ±¾¶£¬
ÓÉ£¨¢ñ£©Öª£¬|OF|=2£¬
ÓÖAÊǹýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáµÄ½»µã£¬
¡à¡ÏAFO=$\frac{¦Ð}{3}$£¬|AF|=4£¬
ÓÚÊÇÔ²CµÄ°ë¾¶Îª2£¬Ô²Ðĵļ«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬
¡àÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=4cos£¨\frac{¦Ð}{3}-¦È£©$£¬
´Ëʱ£¬µãPµÄ¼«×ø±êΪ£¨4cos£¨$\frac{¦Ð}{3}-\frac{¦Ð}{6}$£©£¬$\frac{¦Ð}{6}$£©£¬¼´£¨2$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£®
µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ¼«×ø±êµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®
| A£® | 2 | B£® | 3 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{3}$ |