题目内容

17.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若AB=CB=1,${A_1}C=\frac{{\sqrt{6}}}{2}$,求三棱锥A-A1BC的体积.

分析 (I)取AB的中点O,连接CO,OA1,A1B,由CA=CB得CO⊥AB,由△AA1B是等边三角形得OA1⊥AB,故AB⊥平面COA1,于是AB⊥A1C;
(II)根据等边三角形性质求出OC,OA1,由勾股定理逆定理得出CO⊥OA1,求出S${\;}_{△CO{A}_{1}}$,于是V${\;}_{A-{A}_{1}BC}$=2V${\;}_{A-{A}_{1}OC}$.

解答 (Ⅰ)证明:取AB的中点O,连接CO,OA1,A1B.
∵CA=CB,∴CO⊥AB,
∵AB=AA1,∠BAA1=60°.∴△A1AB为等边三角形.
∴OA1⊥AB,
又∵OC?平面COA1,OA1?平面COA1,OC∩OA1=O.
∴AB⊥平面COA1.又A1C?平面COA1
∴AB⊥A1C.
(Ⅱ)解:∵AB=BC=AC=1,∴CO=$\frac{\sqrt{3}}{2}$,
∵AB=AA1=1,∠BAA1=60°,∴A1O=$\frac{\sqrt{3}}{2}$.
∵A1C=$\frac{\sqrt{6}}{2}$,∴CO2+A1O2=A1C2
∴CO⊥A1O.
∴S${\;}_{△CO{A}_{1}}$=$\frac{1}{2}CO•{A}_{1}O$=$\frac{1}{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{3}{8}$.
∴V${\;}_{A-{A}_{1}BC}$=2V${\;}_{A-{A}_{1}OC}$=2×$\frac{1}{3}{S}_{△CO{A}_{1}}•AO$=2×$\frac{1}{3}×\frac{3}{8}×\frac{1}{2}$=$\frac{1}{8}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网