题目内容

9.已知椭圆Г:$\frac{x^{2}}{a^{2}}$+$\frac{y^{2}}{b^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且经过点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)
(1)已知直线l:y=x,点M、N是直线l上不同的两点,且F1M、F2N均与直线l垂直,求三角形F1MN面积;
(2)过椭圆Г内一点T(t,0)作两条直线分别交椭圆Г于点A、C和B、D,设直线AC与BD的斜率分别是k1,k2,若|AT|•|TC|=|BT|•|TD|,证明:k1+k2为定值.

分析 (1)由题意知e=$\frac{c}{a}$=$\frac{1}{2}$,$\frac{{\sqrt{3}}^{2}}{{a}^{2}}$+$\frac{(\frac{\sqrt{3}}{2})^{2}}{{b}^{2}}$=1,从而解得椭圆方程;结合图象求面积;
(2)由题意设直线AC的方程为x=$\frac{y}{{k}_{1}}$+t,从而与椭圆方程联立化简可得(4+$\frac{3}{{{k}^{2}}_{1}}$)y2+6t$\frac{1}{{k}_{1}}$x+3t2-12=0,从而可得|AT|•|TC|=(1+$\frac{1}{{{k}^{2}}_{1}}$)•|y1y2|=(1+$\frac{1}{{{k}^{2}}_{1}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{1}}}$|,|BT|•|TD|=(1+$\frac{1}{{{k}^{2}}_{2}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{2}}}$|,从而证明.

解答 解:(1)∵e=$\frac{c}{a}$=$\frac{1}{2}$,$\frac{{\sqrt{3}}^{2}}{{a}^{2}}$+$\frac{(\frac{\sqrt{3}}{2})^{2}}{{b}^{2}}$=1,
∴a2=4,c2=1,b2=3;
∴椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
结合图象可知,
|OF1|=1,∠F1OM=$\frac{π}{4}$;
|MF1|=|OM|=$\frac{\sqrt{2}}{2}$,
故S${\;}_{△{F}_{1}MN}$=$\frac{1}{2}$•|MN|•|MF1|
=$\frac{1}{2}$•$\sqrt{2}$•$\frac{\sqrt{2}}{2}$=$\frac{1}{2}$;
证明:(2)由题意,设直线AC的方程为x=$\frac{y}{{k}_{1}}$+t,
与$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1联立消元可得,
(4+$\frac{3}{{{k}^{2}}_{1}}$)y2+6t$\frac{1}{{k}_{1}}$x+3t2-12=0,
设A(x1,y1),C(x2,y2
∴y1y2=$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{1}}}$,
∴|AT|•|TC|=(1+$\frac{1}{{{k}^{2}}_{1}}$)•|y1y2|=(1+$\frac{1}{{{k}^{2}}_{1}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{1}}}$|,
同理可得,
|BT|•|TD|=(1+$\frac{1}{{{k}^{2}}_{2}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{2}}}$|,
故(1+$\frac{1}{{{k}^{2}}_{1}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{1}}}$|=(1+$\frac{1}{{{k}^{2}}_{2}}$)•|$\frac{3{t}^{2}-12}{4+\frac{3}{{{k}^{2}}_{2}}}$|;
故(1+$\frac{1}{{{k}^{2}}_{1}}$)(4+$\frac{3}{{{k}^{2}}_{2}}$)=(1+$\frac{1}{{{k}^{2}}_{2}}$)(4+$\frac{3}{{{k}^{2}}_{1}}$),
故$\frac{1}{{{k}^{2}}_{1}}$=$\frac{1}{{{k}^{2}}_{2}}$;
故k1=k2(舍去)或k1=-k2
故k1+k2=0,为定值.

点评 本题考查了圆锥曲线与直线的位置关系的应用及判断,同时考查了数形结合的思想方法应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网