题目内容
命题“x∈Z,都有x2-2x+a>0”的否定是( )
| A、?x∈Z,使x2-2x+a≤0 |
| B、?x∈Z,使x2-2x+a>0 |
| C、?x∈Z,都有x2-2x+a>0 |
| D、不存在?x∈Z,使x2-2x+a>0 |
考点:特称命题
专题:简易逻辑
分析:根据全称命题的否定是特称命题,即可得到结论.
解答:
解:∵命题是全称命题,
∴根据全称命题的否定是特称命题得命题的否定是:
?x∈Z,使x2-2x+a≤0,
故选:A
∴根据全称命题的否定是特称命题得命题的否定是:
?x∈Z,使x2-2x+a≤0,
故选:A
点评:本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.
练习册系列答案
相关题目
已知全集U=R,集合M={x|x<3},N={y|y≥1},则M∩(∁UN)=( )
| A、(-∞,1) | B、[1,3) |
| C、[3,+∞) | D、∅ |
观察下列各式31=3,32=9,33=27,34=81,…,则32013的个位数为( )
| A、1 | B、3 | C、7 | D、9 |
某大楼共有16层,有15人在第一层上了电梯,他们分别到第2至16层,每层一人,而电梯只允许停一次,可知只能使一个人满意,其余14人都要步行上楼或下楼,假设乘客下一层的不满意度为1,上一层的不满意度为3,则所有人不满意度之和最小时,电梯应当停在第( )
| A、10层 | B、11层 |
| C、12层 | D、13层 |
己知一个正方体的所有顶点在一个球面上,若球的体积为
,则正方体的棱长为( )
| 9π |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
| D、1 |
一条直线l的法向量( )
| A、是唯一的 |
| B、有两个,它们互为负向量 |
| C、可以是除零向量外的任意向量 |
| D、可以有无限个,它们是互为平行的非零向量 |
已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x+
的零点分别为x1,x2,x3,则它们的大小关系为( )
| x |
| A、x1<x2<x3 |
| B、x2<x1<x3 |
| C、x1<x3<x2, |
| D、x3<x2<x1 |