题目内容
15.设函数f(x)=2x-a,g(x)=x+2.(1)当a=1时,求不等式f(x)+f(-x)≤g(x)的解集;
(2)求证:$f({\frac{b}{2}}),f({-\frac{b}{2}}),f({\frac{1}{2}})$中至少有一个不小于$\frac{1}{2}$.
分析 (1)利用绝对值的意义,分类讨论,即可求不等式f(x)+f(-x)≤g(x)的解集;
(2)利用反证法证明即可.
解答 (1)解:当a=1时,|2x-1|+|2x+1|≤x+2,
$\left\{{\begin{array}{l}{x≤-\frac{1}{2}}\\{-4x≤x+2}\end{array}}\right.$无解;$\left\{{\begin{array}{l}{-\frac{1}{2}<x<\frac{1}{2}}\\{2≤x+2}\end{array}}\right.$,解得$0≤x<\frac{1}{2}$;$\left\{{\begin{array}{l}{x≥\frac{1}{2}}\\{4x≤x+2}\end{array}}\right.$,解得$\frac{1}{2}≤x≤\frac{2}{3}$.
综上,不等式的解集为$\left\{{x|0≤x≤\frac{2}{3}}\right\}$.
(2)证明:若$f({\frac{b}{2}}),f({-\frac{b}{2}}),f({\frac{1}{2}})$都小于$\frac{1}{2}$,
则$\left\{{\begin{array}{l}{-\frac{1}{2}<a+b<\frac{1}{2}}\\{-\frac{1}{2}<a-b<\frac{1}{2}}\\{-\frac{1}{2}<1-a<\frac{1}{2}}\end{array}}\right.$,前两式相加得$-\frac{1}{2}<a<\frac{1}{2}$与第三式$\frac{1}{2}<a<\frac{3}{2}$矛盾.故$f({\frac{b}{2}}),f({-\frac{b}{2}}),f({\frac{1}{2}})$中至少有一个不小于$\frac{1}{2}$.
点评 本题考查绝对值不等式的解法,考查反证法的运用,考查学生分析解决问题的能力,属于中档题.
(1)当BC=4,AB=4时,求AC的长;
(2)当∠BAC=90°时,求△ABC周长的最大值;
(3)当∠BAD=45°,∠CAD=30°时,求△ABC的面积.
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |
| A. | y2=8x | B. | y2=-8x | C. | x2=8y | D. | x2=-8y |