题目内容
12.将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位长度,再向下平移1个单位长度,所得的图象的对称轴是( )| A. | x=kπ+$\frac{π}{2}$,k∈Z | B. | x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z | C. | x=2kπ+π,k∈Z | D. | x=kπ+$\frac{π}{4}$,k∈Z |
分析 由题意利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.
解答 解:将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位长度,可得y=cos(2x+$\frac{π}{2}$)=-sin2x的图象;
再向下平移1个单位长度,可得y=-sin2x-1的图象,令2x=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故所得图象的对称轴为 x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
练习册系列答案
相关题目
14.已知函数f(x)=ax3-2x2+1,若f(x)存在唯一的零点x0,且x0<0,则a的取值范围为( )
| A. | (2,+∞) | B. | (0,$\frac{4\sqrt{6}}{9}$) | C. | (-∞,-$\frac{4\sqrt{6}}{9}$) | D. | ($\frac{4\sqrt{6}}{9}$,+∞) |
17.已知在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{3}$,∠ACB=120°,AA1=4,则该三棱柱外接球的表面积为( )
| A. | $\frac{16\sqrt{2}π}{3}$ | B. | 64$\sqrt{2}$π | C. | 32π | D. | 8π |
1.已知直线l:kx-y+2k-1=0与圆x2+y2=6交于A,B两点,若|AB|=2$\sqrt{2}$,则k=( )
| A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
2.已知向量$\overrightarrow{a}$=(4,-6),$\overrightarrow{b}$=(9,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为( )
| A. | -$\frac{54}{4}$ | B. | -6 | C. | 6 | D. | $\frac{54}{4}$ |