题目内容

12.将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位长度,再向下平移1个单位长度,所得的图象的对称轴是(  )
A.x=kπ+$\frac{π}{2}$,k∈ZB.x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈ZC.x=2kπ+π,k∈ZD.x=kπ+$\frac{π}{4}$,k∈Z

分析 由题意利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.

解答 解:将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位长度,可得y=cos(2x+$\frac{π}{2}$)=-sin2x的图象;
再向下平移1个单位长度,可得y=-sin2x-1的图象,令2x=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故所得图象的对称轴为 x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网