题目内容

17.已知在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{3}$,∠ACB=120°,AA1=4,则该三棱柱外接球的表面积为(  )
A.$\frac{16\sqrt{2}π}{3}$B.64$\sqrt{2}$πC.32πD.

分析 由题意可知直三棱柱ABC-A1B1C1中,底面ABC的小圆半径为1,连接两个底面中心的连线,中点与顶点的连线就是球的半径,即可求出球的表面积

解答 解:由题意可知直三棱柱ABC-A1B1C1中,底面小圆ABC的半径为r,
由正弦定理得到$\frac{AB}{sin∠ACB}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}=2r$,所以r=2,
连接两个底面中心的连线,中点与顶点的连线就是球的半径,
外接球的半径为:$\sqrt{{2}^{2}+{2}^{2}}=2\sqrt{2}$,
外接球的表面积为:4π•(2$\sqrt{2}$)2=32π;
故选C.

点评 本题考查直三棱柱的外接球的表面积的求法,解题的关键是外接球的半径,直三棱柱的底面中心的连线的中点与顶点的连线是半径,考查空间想象能力考查球的表面积,考查学生分析解决问题的能力,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网