题目内容
各项均为正数且公差为1的等差数列{an},其前n项和为Sn,则
=( )
| lim |
| n→∞ |
| Sn |
| an•an+1 |
| A、1 | ||
B、
| ||
C、
| ||
D、
|
分析:设等差数列的首项为a1则an=a1+n-1,an+1=a1+n,Sn=na1+
,则
=
可求
| n(n-1) |
| 2 |
| lim |
| n→∞ |
| Sn |
| an•an+1 |
| lim |
| n→∞ |
na1+
| ||
| (a1+n-1)(a1+n) |
解答:解:设等差数列的首项为a1
则an=a1+n-1,an+1=a1+n,Sn=na1+
则
=
=
=
故选B.
则an=a1+n-1,an+1=a1+n,Sn=na1+
| n(n-1) |
| 2 |
则
| lim |
| n→∞ |
| Sn |
| an•an+1 |
| lim |
| n→∞ |
na1+
| ||
| (a1+n-1)(a1+n) |
| lim |
| n→∞ |
| ||||||
(
|
| 1 |
| 2 |
故选B.
点评:本题主要考查了
型的极限的求解,解题的关键是利用等差数列的通项公式及求和公式求出an,Sn.
| ∞ |
| ∞ |
练习册系列答案
相关题目