题目内容
7.若一条直线平行于一个平面,则垂直于这个平面的直线一定与这条直线( )| A. | 平行 | B. | 异面 | C. | 垂直 | D. | 相交 |
分析 设a∥α,b⊥α,则α内必存在直线l∥a,由b⊥α可得b⊥l,故b⊥a.
解答 解:设直线a∥平面α,b⊥平面α,
过直线a作平面β,使得α∩β=l,则a∥l,
∵b⊥α,l?α,
∴b⊥l,
∴b⊥a.
故选:C.
点评 本题考查了线面平行与垂直的性质,属于基础题.
练习册系列答案
相关题目
17.已知全集U=R,集合A={x|x2≥4},集合B={x|x>1},则∁U(A∪B)=( )
| A. | {x|-2<x<2} | B. | {x|1≤x≤2} | C. | {x|-2<x≤1} | D. | {x|-2≤x<1} |
18.小明有3本相同的小说,3本相同的漫画,从中取出4本赠送给4位同学,每位同学1本,则不同的赠送方法共有( )
| A. | 12种 | B. | 14种 | C. | 16种 | D. | 18种 |
2.函数f(x)=$\frac{(x+1)^{0}}{\sqrt{|x|-x}}$的定义域为( )
| A. | {x|x<0,且x≠-1} | B. | {x|x<0} | C. | {x|x<-1} | D. | {x|x≠0} |
12.若等比数列{an}的各项均为正数,a1+2a2=3,a32=4a2a6,则a4=( )
| A. | $\frac{3}{8}$ | B. | $\frac{24}{5}$ | C. | $\frac{3}{16}$ | D. | $\frac{9}{16}$ |
19.函数y=sin$\frac{x}{3}$的图象与函数y=sinx的图象相比( )
| A. | 周期变为原来的3倍,纵坐标不变 | |
| B. | 周期变为原来的$\frac{1}{3}$,纵坐标不变 | |
| C. | 纵坐标伸长为原来的3倍,周期不变 | |
| D. | 纵坐标伸长为原来的$\frac{1}{3}$倍,周期不变 |
16.已知直线l:mx+y+m+2=0上存在点P(x,y)满足$\left\{\begin{array}{l}{y≥x}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,则l在y轴上的截距b取值范围为( )
| A. | [-$\frac{2}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,+∞) | C. | [-∞,$\frac{1}{2}$] | D. | [0,$\frac{1}{2}$] |