题目内容
13.分析 在△DEM中使用余弦定理解出cosD,得到sinD,在△DEF中使用正弦定理解出EF.
解答 解:在△DEM中,由余弦定理得cos∠DME=$\frac{D{M}^{2}+E{M}^{2}-D{E}^{2}}{2DM•EM}$=-$\frac{1}{8}$.
∴sin∠EMF=sin∠DME=$\sqrt{1-co{s}^{2}∠DME}$=$\frac{\sqrt{63}}{8}$.
在△EMF中,由正弦定理得$\frac{EM}{sinF}=\frac{EF}{sin∠EMF}$,即$\frac{2}{\frac{3}{5}}=\frac{EF}{\frac{\sqrt{63}}{8}}$,
解得EF=$\frac{5\sqrt{7}}{4}$.
故答案为$\frac{5\sqrt{7}}{4}$.
点评 本题考查了正余弦定理在解三角形中的应用,选择合适的三角形是解题的关键,属于中档题.
练习册系列答案
相关题目
1.“xy≠0”是“x≠0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
18.已知i为虚数单位,则z=$\frac{i}{1-2i}$在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
2.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选2人,则选出的火炬手的编号相连的概率为( )
| A. | $\frac{3}{10}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{10}$ | D. | $\frac{2}{5}$ |