题目内容
9.若函数f(x)满足f(x)=x2lnx+3xf′(1)-1,则f′(1)等于( )| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{3}$ | C. | -1 | D. | 1 |
分析 求函数的导数,令x=1即可得到结论.
解答 解:函数的导数f′(x)=2xlnx+x2$•\frac{1}{x}$+3f′(1)=2xlnx+x+3f′(1),
令x=1,则f′(1)=1+3f′(1),
即2f′(1)=-1,f′(1)=-$\frac{1}{2}$,
故选:A.
点评 本题主要考查函数的导数的计算,根据函数的导数公式建立方程关系是解决本题的关键.比较基础.
练习册系列答案
相关题目
19.某企业为了研究员工工作积极性和对待企业改革态度的关系,随机抽取了80名员工进行调查,所得的数据如表所示:
根据上述数据能得出的结论是(参考公式与数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d);当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)( )
| 积极支持改革 | 不太支持改革 | 合 计 | |
| 工作积极 | 50 | 10 | 60 |
| 工作一般 | 10 | 10 | 20 |
| 合 计 | 60 | 20 | 80 |
| A. | 有99%的把握说事件A与B有关 | B. | 有95%的把握说事件A与B有关 | ||
| C. | 有90%的把握说事件A与B有关 | D. | 事件A与B无关 |
20.下列函数中,在区间(-1,$\frac{π}{2}$)上单调递减的函数为( )
| A. | y=x2 | B. | y=3x-1 | C. | y=log2(x+1) | D. | y=-sinx |
4.已知集合B={x|-3<x<2},C={x|2x-1≥0}.
(1)求B∩C,B∪C;
(2)设函数f(x)=$\sqrt{lo{g}_{2}(2x+m)}$的定义域为A,且A⊆C,求实数m的最大值.
(1)求B∩C,B∪C;
(2)设函数f(x)=$\sqrt{lo{g}_{2}(2x+m)}$的定义域为A,且A⊆C,求实数m的最大值.
14.下列等式不正确的是( )
| A. | ${C}_{n}^{m}$=${C}_{n}^{n-m}$ | B. | ${C}_{n}^{m}$=$\frac{{A}_{n}^{m}}{n!}$ | ||
| C. | (n+2)(n+1)${A}_{n}^{m}$=${A}_{n+2}^{m+2}$ | D. | ${C}_{n}^{r}$=${C}_{n-1}^{r-1}$+${C}_{n-1}^{r}$ |
1.某几何体的三视图如图所示,它的表面积为( )

| A. | 3+$\frac{π}{4}$ | B. | $\frac{5π}{4}$ | C. | $\frac{7π}{8}$ | D. | π |