ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
£¨1£©ÇóÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§£»
£¨2£©ÉèÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ1£¬Ô²F2ÓëxÖáµÄÓÒ½»µãΪQ£¬¹ýµãQ×÷бÂÊΪk£¨k£¾0£©µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÓëÔ²F2½»ÓÚC£¬DÁ½µã£¬ÈôOÔÚÒÔABΪֱ¾¶µÄÔ²ÉÏ£¬Çó|
| CD |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèÇÐÏß³¤|PT|=
£¬µ±ÇÒ½öµ±|PF2|È¡µÃ×îСֵʱȡµÃ×îСֵ£¬ÓÉ´ËÄÜÇó³öÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§£®
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÁªÁ¢·½³Ì×é
£¬µÃ£¨a2k2+1£©x2-2a2k2x+a2k2-a2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³ö|
|µÄ×î´óÖµ£®
| |PF2|2-(b-c)2 |
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÁªÁ¢·½³Ì×é
|
| CD |
½â´ð£º
½â£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÉèÇÐÏß³¤|PT|=
£¬
ËùÒÔµ±ÇÒ½öµ±|PF2|È¡µÃ×îСֵʱȡµÃ×îСֵ£®
¶ø|PF2|min=a-c£¬ËùÒÔ
¡Ý
(a-c)£¬
ËùÒÔ0£¼
¡Ü
£¬
´Ó¶ø½âµÃ
¡Üe£¼
£¬
¡àÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ{e|
¡Üe£¼
}£®¡£¨5·Ö£©
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬
ÔòµÃÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÁªÁ¢·½³Ì×é
£¬
µÃ£¨a2k2+1£©x2-2a2k2x+a2k2-a2=0£¬
ÔòÓÐx1+x2=
£¬x1x2=
£¬
´úÈëÖ±Ïß·½³ÌµÃy1y2=k2[x1x2-(x1+x2)+1]=
£¬x1x2+y1y2=
£¬
ÓÉÌâÒâOA¡ÍOB£¬ËùÒÔ
•
=0£¬
ËùÒÔx1x2+y1y2=0£¬k2=a2£¬½âµÃk=a£¬
Ö±Ïß·½³ÌΪax-y-a=0£¬Ô²ÐÄF2£¨c£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=
£¬|CD|2=4[(b-c)2-d2]=4[(1-c)2-
]=
£¬|CD|=
=2
=2
=2
=2
£¬
ÓÖÓÉ£¨1£©Öª
¡Üe£¼
£¬
ËùÒÔ
¡Üc£¼1£¬
¡Ü2c+1£¼3£¬ËùÒÔ|CD|¡Ê(0£¬
]£¬
ËùÒÔµ±c=
ʱ£¬|CD|max=
£¬
ËùÒÔ|
|µÄ×î´óֵΪ
£®¡£¨13·Ö£©
| |PF2|2-(b-c)2 |
ËùÒÔµ±ÇÒ½öµ±|PF2|È¡µÃ×îСֵʱȡµÃ×îСֵ£®
¶ø|PF2|min=a-c£¬ËùÒÔ
| (a-c)2-(b-c)2 |
| ||
| 2 |
ËùÒÔ0£¼
| b-c |
| a-c |
| 1 |
| 2 |
´Ó¶ø½âµÃ
| 3 |
| 5 |
| ||
| 2 |
¡àÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ{e|
| 3 |
| 5 |
| ||
| 2 |
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬
ÔòµÃÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÁªÁ¢·½³Ì×é
|
µÃ£¨a2k2+1£©x2-2a2k2x+a2k2-a2=0£¬
ÔòÓÐx1+x2=
| 2a2k2 |
| a2k2+1 |
| a2k2-a2 |
| a2k2+1 |
´úÈëÖ±Ïß·½³ÌµÃy1y2=k2[x1x2-(x1+x2)+1]=
| k2(1-a2) |
| a2k2+1 |
| k2-a2 |
| a2k2+1 |
ÓÉÌâÒâOA¡ÍOB£¬ËùÒÔ
| OA |
| OB |
ËùÒÔx1x2+y1y2=0£¬k2=a2£¬½âµÃk=a£¬
Ö±Ïß·½³ÌΪax-y-a=0£¬Ô²ÐÄF2£¨c£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=
| |ac-a| | ||
|
| a2(c-1)2 |
| a2+1 |
| 4(c-1)2 |
| a2+1 |
| 2|c-1| | ||
|
|
|
1-
|
1-
|
ÓÖÓÉ£¨1£©Öª
| 3 |
| 5 |
| ||
| 2 |
ËùÒÔ
| 3 |
| 4 |
| 5 |
| 2 |
2
| ||
| 41 |
ËùÒÔµ±c=
| 3 |
| 4 |
2
| ||
| 41 |
ËùÒÔ|
| CD |
2
| ||
| 41 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²éÏ߶㤵Ä×î´óÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµãµ½Ö±ÏߵľàÀ빫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿