ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾c£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬cΪ°ë½¹¾à£¬ÈôÒÔF2ΪԲÐÄ£¬b-cΪ°ë¾¶×÷Ô²F2£¬¹ýÍÖÔ²ÉÏÒ»µãP×÷´ËÔ²µÄÇÐÏߣ¬ÇеãΪT£¬ÇÒ|PT|µÄ×îСֵ²»Ð¡ÓÚ
3
2
£¨a-c£©£¬
£¨1£©ÇóÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§£»
£¨2£©ÉèÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ1£¬Ô²F2ÓëxÖáµÄÓÒ½»µãΪQ£¬¹ýµãQ×÷бÂÊΪk£¨k£¾0£©µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÓëÔ²F2½»ÓÚC£¬DÁ½µã£¬ÈôOÔÚÒÔABΪֱ¾¶µÄÔ²ÉÏ£¬Çó|
CD
|µÄ×î´óÖµ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèÇÐÏß³¤|PT|=
|PF2|2-(b-c)2
£¬µ±ÇÒ½öµ±|PF2|È¡µÃ×îСֵʱȡµÃ×îСֵ£¬ÓÉ´ËÄÜÇó³öÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§£®
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÁªÁ¢·½³Ì×é
y=k(x-1)
x2
a2
+y2=1
£¬µÃ£¨a2k2+1£©x2-2a2k2x+a2k2-a2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³ö|
CD
|µÄ×î´óÖµ£®
½â´ð£º ½â£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÉèÇÐÏß³¤|PT|=
|PF2|2-(b-c)2
£¬
ËùÒÔµ±ÇÒ½öµ±|PF2|È¡µÃ×îСֵʱȡµÃ×îСֵ£®
¶ø|PF2|min=a-c£¬ËùÒÔ
(a-c)2-(b-c)2
¡Ý
3
2
(a-c)
£¬
ËùÒÔ0£¼
b-c
a-c
¡Ü
1
2
£¬
´Ó¶ø½âµÃ
3
5
¡Üe£¼
2
2
£¬
¡àÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ{e|
3
5
¡Üe£¼
2
2
}£®¡­£¨5·Ö£©
£¨2£©ÒÀÌâÒâµÃµãQµÄ×ø±êΪ£¨1£¬0£©£¬
ÔòµÃÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÁªÁ¢·½³Ì×é
y=k(x-1)
x2
a2
+y2=1
£¬
µÃ£¨a2k2+1£©x2-2a2k2x+a2k2-a2=0£¬
ÔòÓÐx1+x2=
2a2k2
a2k2+1
£¬x1x2=
a2k2-a2
a2k2+1
£¬
´úÈëÖ±Ïß·½³ÌµÃy1y2=k2[x1x2-(x1+x2)+1]=
k2(1-a2)
a2k2+1
£¬x1x2+y1y2=
k2-a2
a2k2+1
£¬
ÓÉÌâÒâOA¡ÍOB£¬ËùÒÔ
OA
OB
=0
£¬
ËùÒÔx1x2+y1y2=0£¬k2=a2£¬½âµÃk=a£¬
Ö±Ïß·½³ÌΪax-y-a=0£¬Ô²ÐÄF2£¨c£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=
|ac-a|
a2+1
£¬|CD|2=4[(b-c)2-d2]=4[(1-c)2-
a2(c-1)2
a2+1
]=
4(c-1)2
a2+1
£¬|CD|=
2|c-1|
a2+1
=2
c2-2c+1
a2+1
=2
c2-2c+1
c2+2
=2
1-
2c+1
c2+2
=2
1-
4
2c+1+
9
2c+1
-2
£¬
ÓÖÓÉ£¨1£©Öª
3
5
¡Üe£¼
2
2
£¬
ËùÒÔ
3
4
¡Üc£¼1£¬
5
2
¡Ü2c+1£¼3
£¬ËùÒÔ|CD|¡Ê(0£¬
2
41
41
]
£¬
ËùÒÔµ±c=
3
4
ʱ£¬|CD|max=
2
41
41
£¬
ËùÒÔ|
CD
|µÄ×î´óֵΪ
2
41
41
£®¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ÀëÐÄÂʵÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²éÏ߶㤵Ä×î´óÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµãµ½Ö±ÏߵľàÀ빫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø