题目内容

已知函数f(x)=x|x-a|,(a≠0)
(1)写出f(x)的单调区间(用a表示)
(2)若f(x)在[3,+∞)上单调递增,求a的取值范围
(3)若f(x)在(m,n)上既存在最大值又存在最小值,求m和n的取值范围(用a表示)
考点:函数的最值及其几何意义,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)对a分类讨论,去掉绝对值,把函数化为二次函数求出函数的单调区间;
(2)利用(1)的结论即可得出;
(3)a≠0,f(x)=
x(x-a)x≥a
x(a-x)x<a
,分a>0和a<0两种情况,分别画出函数f(x)的图象,结合图象,根据题中要求,分别求出m、n的取值范围.
解答: 解:(1)当x≥a时,f(x)=x(x-a)
∴a>0时,f(x)的单调递增区间是[a,+∞),
a<0时,f(x)的单调递减区间是(0,
a
2
),递增区间是(
a
2
,+∞)
当x<a时,f(x)=x(a-x),
∴a>0时,f(x)的单调递增区间是(-∞,
a
2
),递减区间是(
a
2
,a),
a<0时,f(x)的单调递增区间是(-∞,a).
(2)由(1)可知若f(x)在[3,+∞)上单调递增,则a<0.
(3)a≠0,f(x)=
x(x-a)x≥a
x(a-x)x<a

①当a>0时,f(x)的图象如图1所示:显然函数f(x)在(-∞,a)上的最大值为f(
a
2
)=
a2
4

y=
a2
4
y=x(x-a)
,解得x=
1+
2
2
a

由于函数f(x)在(m,n)上既有最大值又有最小值,∴0≤m<
a
2
,a<n≤
1+
2
2
a

   图1  图2 
 
②当a<0时,如图2所示:显然函数f(x)在(a,+∞)上的最小值为f(
a
2
)=-
a2
4

y=-
a2
4
y=x(a-x)
解得 x=
1+
2
2
a

由于函数f(x)在(m,n)上既有最大值又有最小值,故有
1+
2
2
a
≤m<a,
a
2
<n≤0.
点评:本题主要考查带有绝对值的函数图象和性质,二次函数的性质应用,体现了分类讨论和数形结合的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网