题目内容
20.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{{n}^{2}+n}$,求数列{an}的通项公式.分析 由an+1=an+$\frac{1}{{n}^{2}+n}$,得到an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,由此利用an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1,能求出数列{an}的通项公式.
解答 解:∵an+1=an+$\frac{1}{{n}^{2}+n}$,
∴an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n-2}$-$\frac{1}{n-1}$)+…+($\frac{1}{2}$-$\frac{1}{3}$)+(1-$\frac{1}{2}$)+$\frac{1}{2}$
=1-$\frac{1}{n}$+$\frac{1}{2}$
=$\frac{3}{2}$-$\frac{1}{n}$,
当n=1时,a1=$\frac{3}{2}$-1=$\frac{1}{2}$成立,
故an=$\frac{3}{2}$-$\frac{1}{n}$.
点评 本题考查数列的通项公式的求法,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目
10.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个互相垂直的单位向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=( )
| A. | 2$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 4 |
11.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为( )
| A. | (x-2)2+y2=$\sqrt{10}$ | B. | (x+2)2+y2=10 | C. | (x+2)2+y2=$\sqrt{10}$ | D. | (x-2)2+y2=10 |
12.化简$\frac{1+sin8θ-cos8θ}{1+sin8θ+cos8θ}$等于( )
| A. | tan2θ | B. | cot4θ | C. | tan4θ | D. | cot2θ |