题目内容

20.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{{n}^{2}+n}$,求数列{an}的通项公式.

分析 由an+1=an+$\frac{1}{{n}^{2}+n}$,得到an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,由此利用an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1,能求出数列{an}的通项公式.

解答 解:∵an+1=an+$\frac{1}{{n}^{2}+n}$,
∴an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n-2}$-$\frac{1}{n-1}$)+…+($\frac{1}{2}$-$\frac{1}{3}$)+(1-$\frac{1}{2}$)+$\frac{1}{2}$
=1-$\frac{1}{n}$+$\frac{1}{2}$
=$\frac{3}{2}$-$\frac{1}{n}$,
当n=1时,a1=$\frac{3}{2}$-1=$\frac{1}{2}$成立,
故an=$\frac{3}{2}$-$\frac{1}{n}$.

点评 本题考查数列的通项公式的求法,解题时要认真审题,注意累加法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网