题目内容

7.已知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(3an-1).数列{bn}为等差数列,b1=a1,b2=a3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求数列{cn}的前n项和Tn

分析 (I)利用递推关系与等比数列的通项公式可得:an.利用等差数列的通项公式可得bn
(II)利用“裂项求和”方法即可得出.

解答 解:(Ⅰ)由${S_n}=\frac{1}{2}(3{a_n}-1)$,得${S_{n-1}}=\frac{1}{2}(3{a_{n-1}}-1)(n≥2)$,
两式相减得:${a_n}=\frac{1}{2}(3{a_n}-3{a_{n-1}})(n≥2)$,
即an=3an-1(n≥2),
由${S_1}=\frac{1}{2}(3{a_1}-1)$,得a1=1.
∴数列{an}是首项为1,公比为3的等比数列,
故${a_n}={3^{n-1}}$.
设等差数列{bn}的公差为d,依题设得,b1=a1,b5=a3
由上式可得1+4d=9,解得d=2,
∴bn=1+2(n-1)=2n-1.
(Ⅱ)由(Ⅰ)知,bn+1=2n+1,
∴${c_n}=\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}=\frac{{4({n^2}+n+1)}}{{{{(2n+1)}^2}-1}}=\frac{{4({n^2}+n+1)}}{{4{n^2}+4n}}=\frac{{{n^2}+n+1}}{{{n^2}+n}}$=$1+\frac{1}{n(n+1)}=1+(\frac{1}{n}-\frac{1}{n+1})$.
∴${T_n}={c_1}+{c_2}+…+{c_n}=[1+(1-\frac{1}{2})]+[1+(\frac{1}{2}-\frac{1}{3})]+…+[1+(\frac{1}{n}-\frac{1}{n+1})]$
=$n+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=n+1-\frac{1}{n+1}=\frac{{{n^2}+2n}}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网