题目内容

11.$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

分析 根据$(\overrightarrow{a}+\overrightarrow{b})⊥\overrightarrow{a}$即可得出$(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}=0$,进行数量积的运算即可求出$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{1}{2}$,从而便可得出$\overrightarrow{a},\overrightarrow{b}$的夹角.

解答 解:∵$(\overrightarrow{a}+\overrightarrow{b})⊥\overrightarrow{a}$;
∴$(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}$=$1+2cos<\overrightarrow{a},\overrightarrow{b}>=0$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{1}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow{b}>≤π$;
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网