题目内容

设函数f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,   
3
sin2x),x∈R

(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为
3
2
,求
b+c
sinB+sinC
的值.
分析:(1)利用向量的数量积通过二倍角公式,两角和的正弦函数化简函数的表达式,然后求f(x)的最小正周期,借助正弦函数的单调减区间求出函数的单调递减区间;
(2)通过f(A)=2,利用三角形的内角,求出A的值,利用△ABC的面积为
3
2
,求出c的值,通过正弦定理求
b+c
sinB+sinC
的值即可
解答:解:(1)f(x)=
m
n
=2cos2x+
3
sin2x=
3
sin2x+cos2x+1=2sin(2x+
π
6
)+1

函数f(x)的最小正周期T=
2
.---------------(2分)
π
2
+2kπ≤2x+
π
6
2
+2kπ,k∈Z,解得
π
6
+kπ≤x≤
3
+kπ
.∴函数f(x)的单调递减区间是[
π
6
+kπ,
3
+kπ],k∈Z
.--------------(4分)
(2)由f(A)=2,得2sin(2A+
π
6
)+1=2
即sin(2A+
π
6
)=
1
2
,在△ABC中
,∵0<A<π,
π
6
<2A+
π
6
π
6
+2π
.∴2A+
π
6
=
6
,解得A=
π
3
.-(6分)又∵S△ABC=
1
2
bcsinA=
1
2
×1×c×
3
2
=
3
2
,解得c=2

∴在△ABC中,由余弦定理得:a2=b2+c2-2bccosA=3,∴a=
3
.---------8
b
sinB
=
c
sinC
=
a
sinA
=
3
3
2
,得b=2sinB,c=2sinC
,∴
b+c
sinB+sinC
=2
.--(10分)
点评:本题是中档题,通过向量数量积考查三角函数的化简求值,三角函数的单调性,正弦定理的应用三角形的面积公式的应用,考查计算能力,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网