题目内容

8.在平面直角坐标系xOy中,设不等式组$\left\{\begin{array}{l}-1≤x≤2\\ 0≤y≤2\end{array}\right.$所表示的平面区域是W,从区域W中随机取点M(x,y).
(1)若x,y∈Z,求点M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.

分析 (1)①做出所示平面区域②画网格描整点,找出整数点坐标个数,再找出第一象限中的点个数.二者做除法即可算出概率;
(2)这是一个几何概率模型.算出图中以(0,0)为圆心,1为半径的半圆的面积,即可求出概率.

解答 解:(1)若x,y∈Z,则点M的个数共有12个,列举如下:
(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),
(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).
当点M的坐标为(1,1),(1,2),(2,1),(2,2)时,
点M位于第一象限,故点M位于第一象限的概率为$\frac{1}{3}$.
(2)这是一个几何概率模型,
则区域W的面积是3×2=6,
|OM|<1的面积是以(0,0)为原点,以1为半径的半圆,面积是$\frac{π}{2}$,
故|OM|<1的概率是$\frac{\frac{π}{2}}{6}$=$\frac{π}{12}$,
故满足|OM|≥1的概率是$\frac{12-π}{12}$.

点评 本题考查几何概型问题,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网