题目内容
8.(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1.
分析 (1)延长C1F交CB的延长线于点M,由三角形的中位线的性质可得NF∥AM,从而证明NF∥平面ABCD.
(2)由A1A⊥BD,AC⊥BD,可得BD⊥平面ACC1A1,由DAMB为平行四边形,故MA∥BD,故MA⊥平面ACC1A1,从而证得平面AFC1⊥ACC1A1.
解答
证明:(1)延长C1F交CB的延长线于点M,连接AM.
∵F是BB1的中点,∴F为C1M的中点,B为CM的中点.
又N是线段AC1的中点,故NF∥AM.
又NF?平面ABCD内,AM?平面ABCD,
∴NF∥平面ABCD.
(2)连BD,由直四棱柱ABCD-A1B1C1D1 ,可知A1A⊥平面ABCD,
又∵BD?平面ABCD,∴A1A⊥BD.
∵四边形ABCD为菱形,∴AC⊥BD.
又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.
在四边形DAMB中,DA∥BM且DA=BM,∴四边形DAMB为平行四边形,
故MA∥BD,∴MA⊥平面ACC1A1,
又∵MA?平面AFC1,
∴平面AFC1⊥ACC1A1.
点评 本题考查直线与平面平行的判定,考查平面与平面垂直的判断,考查推理分析与运算能力,考查等价转化思想与数形结合思想的综合运用,属于中档题.
练习册系列答案
相关题目
13.
某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
| 广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
| 销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
20.函数y=2x+1的反函数是( )
| A. | y=logx2+1,x>0且x≠1 | B. | y=log2x+1,x>0 | ||
| C. | y=log2x-1,x>0 | D. | y=log2(x-1),x>1 |
17.设全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},则A∩B=( )
| A. | {x|x<4} | B. | {x|x≤4} | C. | {x|1≤x<4} | D. | {x|1≤x≤4} |
18.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x-2017)3f(x-2017)-27>0的解集为( )
| A. | (2014,+∞) | B. | (0,2014) | C. | (0,2020) | D. | (2020,+∞) |