题目内容

14.已知△ABC的面积为$\frac{\sqrt{3}}{2}$,$\overrightarrow{AB}$$•\overrightarrow{AC}$=-3,则A=$\frac{5π}{6}$.

分析 根据△ABC的面积公式与数量积运算公式,求出tanA的值,从而得出A的大小.

解答 解:△ABC的面积为$\frac{\sqrt{3}}{2}$,∴$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$①
又$\overrightarrow{AB}$$•\overrightarrow{AC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|×cosA=cbcosA=-3②,
$\frac{①}{②}$得tanA=-$\frac{\sqrt{3}}{3}$;
又A∈(0,π),
∴A=$\frac{5π}{6}$.
故答案为:$\frac{5π}{6}$.

点评 本题考查了平面向量的数量积和三角形面积计算问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网