题目内容
【题目】从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]. ![]()
(1)求图中的实数a的值,并估计该高三学生这次成绩在120分以上的人数;
(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.
【答案】
(1)解:由0.025+0.05+0.075+0.1+0.2+0.25+10a=1,得a=0.03成绩在120分以上的人频率为0.3+0.25+0.075=0.625,估计该校成绩在120分以上人数为1200×0.625=750人
(2)解:成绩在[90,100)与[140,150]两个分数段内学生人数分别为2人和3人,从中抽出2人的基本事件总数为10种,其中这两名学生的成绩之差的绝对值不大于10的事件数为4,所求概率为p=
= ![]()
【解析】(1)由频率分布直方图中频率之和为1,能求出a,估计该校成绩在120分以上人数即可;(2)根据概率公式计算即可.
【考点精析】根据题目的已知条件,利用频率分布直方图的相关知识可以得到问题的答案,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
练习册系列答案
相关题目