题目内容
已知f(x)=ax-lnx,a∈R.
(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)f(x)在x=1处有极值,求f(x)的单调递增区间;
(Ⅲ)是否存在实数a,使f(x)在区间(0,e]的最小值是3?若存在,求出a的值;若不存在,说明理由.
(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)f(x)在x=1处有极值,求f(x)的单调递增区间;
(Ⅲ)是否存在实数a,使f(x)在区间(0,e]的最小值是3?若存在,求出a的值;若不存在,说明理由.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(I)当a=2时,f(x)=2x-lnx,函数的定义域为(0,+∞),求导函数,即可确定切点与切线的斜率,从而可得曲线f(x)在点(1,f(1))处的切线方程;
(II)利用f(x)在x=1处有极值,确定a的值,利用导数大于0,结合函数的定义域,即可得到f(x)的单调递增区间;
(III)分类讨论,确定函数f(x)在区间(0,e]上的单调性,从而可得函数的最小值,利用最小值是3,建立方程,即可求得结论.
(II)利用f(x)在x=1处有极值,确定a的值,利用导数大于0,结合函数的定义域,即可得到f(x)的单调递增区间;
(III)分类讨论,确定函数f(x)在区间(0,e]上的单调性,从而可得函数的最小值,利用最小值是3,建立方程,即可求得结论.
解答:
解:(I)当a=2时,f(x)=2x-lnx,函数的定义域为(0,+∞),
求导函数可得:f′(x)=2-
∴f′(1)=1,f(1)=2,
∴曲线f(x)在点(1,f(1))处的切线方程为y-2=x-1,即x-y+1=0;
(II)∵f(x)在x=1处有极值,∴f′(1)=0,
∵f′(x)=a-
∴a-1=0,∴a=1,
∴f′(x)=1-
令f′(x)>0,可得x<0或x>1;
∵x>0,∴x>1
∴f(x)的单调递增区间为(1,+∞);
(III)假设存在实数a,使f(x)在区间(0,e]的最小值是3,
①当a≤0时,∵x∈(0,e],∴f′(x)<0,∴f(x)在区间(0,e]上单调递减,
∴f(x)min=f(e)=ae-1=3,∴a=
(舍去);
②当0<
<e时,f(x)在区间(0,
)上单调递减,在(
,e]上单调递增
∴f(x)min=f(
)=1+lna=3,∴a=e2,满足条件;
③当
≥e时,∵x∈(0,e],∴f′(x)<0,∴f(x)在区间(0,e]上单调递减
∴f(x)min=f(e)=ae-1=3,∴a=
(舍去),
综上所述,存在实数a=e2,使f(x)在区间(0,e]的最小值是3.
求导函数可得:f′(x)=2-
| 1 |
| x |
∴曲线f(x)在点(1,f(1))处的切线方程为y-2=x-1,即x-y+1=0;
(II)∵f(x)在x=1处有极值,∴f′(1)=0,
∵f′(x)=a-
| 1 |
| x |
∴f′(x)=1-
| 1 |
| x |
∵x>0,∴x>1
∴f(x)的单调递增区间为(1,+∞);
(III)假设存在实数a,使f(x)在区间(0,e]的最小值是3,
①当a≤0时,∵x∈(0,e],∴f′(x)<0,∴f(x)在区间(0,e]上单调递减,
∴f(x)min=f(e)=ae-1=3,∴a=
| 4 |
| e |
②当0<
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
∴f(x)min=f(
| 1 |
| a |
③当
| 1 |
| a |
∴f(x)min=f(e)=ae-1=3,∴a=
| 4 |
| e |
综上所述,存在实数a=e2,使f(x)在区间(0,e]的最小值是3.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的极值与单调性,考查函数的最值,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目
设函数f(x)=sin(
-
)-2cos2
+1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,
]时y=g(x)的最大值.
| πx |
| 4 |
| π |
| 6 |
| πx |
| 8 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,
| 4 |
| 3 |
在极坐标系中,由三条直线θ=0,θ=
,ρcosθ+ρsinθ=1围成图形的面积是( )
| π |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|