题目内容

14.已知函数y=x3-ax2-3x+b在x=1处取得极值2,则实数a,b的值分别为(  )
A.0和-4B.0;b取任意实数C.0和4D.4;b取任意实数

分析 先求函数f(x)的导函数,再根据函数f(x)在x=1处取得极值2,得到关于a,b的方程组,解出即可.

解答 解:y=x3-ax2-3x+b,y′=3x2-2ax-3,
∵函数y=x3-ax2-3x+b在x=1处取得极值2,
∴$\left\{\begin{array}{l}{1-a-3+b=2}\\{3-2a-3=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=0}\\{b=4}\end{array}\right.$,
故选:C.

点评 本题主要考查了导数的应用以及函数在某点取得极值的条件,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网