题目内容
3.过点P(-2,0)的直线与抛物线C:y2=4x相交于A,B两点,且|PA|=$\frac{1}{2}$|AB|,则点A到抛物线C的焦点的距离为( )| A. | $\frac{5}{3}$ | B. | $\frac{7}{5}$ | C. | $\frac{9}{7}$ | D. | 2 |
分析 利用过点P(-2,0)的直线与抛物线C:y2=4x相交于A,B两点,且|PA|=$\frac{1}{2}$|AB|,求出A的横坐标,即可求出点A到抛物线C的焦点的距离.
解答 解:设A(x1,y1),B(x2,y2),则分别过A,B作直线x=-2的垂线,垂足分别为D,E.
∵|PA|=$\frac{1}{2}$|AB|,
∴3(x1+2)=x2+2,3y1=y2,y12=4x1,y22=4x2,
∴x1=$\frac{2}{3}$,
∴点A到抛物线C的焦点的距离为1+$\frac{2}{3}$=$\frac{5}{3}$.
故选:A.
点评 本题考查抛物线的定义,考查学生的计算能力,解题的关键是利用抛物线的定义确定A的横坐标.
练习册系列答案
相关题目
17.要得到y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin(2x-$\frac{2π}{3}$)的图象( )
| A. | 向左平移$\frac{2π}{3}$个单位 | B. | 向右平移$\frac{2π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |
8.若函数y=f(x)+cosx在[-$\frac{π}{4},\frac{3π}{4}$]上单调递减,则f(x)可以是( )
| A. | 1 | B. | -sinx | C. | cosx | D. | sinx |
15.已知函数$f(x)=\left\{\begin{array}{l}(2x-{x^2}){e^x},x≤0\\-{x^2}+6x+1,x>0\end{array}\right.$,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为( )
| A. | (1,10) | B. | (-10,-1) | C. | $(0,\frac{{2\sqrt{2}+2}}{{{e^{\sqrt{2}}}}})$ | D. | $(-10,\frac{{2\sqrt{2}+2}}{{{e^{\sqrt{2}}}}})$ |
13.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是( )
| A. | $y=\frac{-2}{x}$ | B. | f(x)=x2+1 | C. | $y=x+\frac{1}{x}$ | D. | y=2x |