题目内容

已知圆:C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(  )
A、(x-2)2+(y-2)2=1
B、(x+2)2+(y+2)2=1
C、(x+2)2+(y-2)2=1
D、(x-2)2+(y+2)2=1
考点:关于点、直线对称的圆的方程
专题:直线与圆
分析:在圆C2上任取一点(x,y),求出此点关于直线x-y-1=0的对称点,则此对称点在圆C1上,再把对称点坐标代入
圆C1的方程,化简可得圆C2的方程.
解答: 解:在圆C2上任取一点(x,y),
则此点关于直线x-y-1=0的对称点(y+1,x-1)在圆C1:(x+1)2+(y-1)2=1上,
∴有(y+1+1)2+(x-1-1)2=1,
即 (x-2)2+(y+2)2=1,
∴答案为(x-2)2+(y+2)2=1.
故选:D.
点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线x-y-1=0的对称点(y+1,x-1)在圆C1上.考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网