题目内容

14.设数列{an}的前n项和为Sn,若S2=4,an+1=2Sn+1,n∈N*
(1)求数列{an}的通项公式及Sn
(2)令bn=log3an+1,Tn=$\frac{1}{{b}_{1}{b}_{3}}$+$\frac{1}{{b}_{2}{b}_{4}}$+$\frac{1}{{b}_{3}{b}_{5}}$+…+$\frac{1}{{b}_{n}{b}_{n+2}}$(n∈N*),求证:Tn<$\frac{3}{4}$.

分析 (1)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{an}是公比q=3的等比数列,即可求通项公式an,再根据等比数列的求和公式计算即可;
(2)根据对数的运算性质化简bn=n,继而得到$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),裂项求和并放缩即可证明

解答 解:(1)∵S2=4,an+1=2Sn+1,n∈N*
∴a1+a2=4,a2=2a1+1,解得a1=1,a2=3.
n≥2时,an=2Sn-1+1,可得:an+1-an=2Sn+1-(2Sn-1+1),
化为:an+1=3an
∴数列{an}是等比数列,公比为3,首项为1.
∴an=3n-1
∴Sn=$\frac{1-{3}^{n}}{1-3}$=$\frac{{3}^{n}-1}{2}$,
(2)bn=log3an+1=log33n=n,
∴$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{{b}_{1}{b}_{3}}$+$\frac{1}{{b}_{2}{b}_{4}}$+$\frac{1}{{b}_{3}{b}_{5}}$+…+$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)<$\frac{3}{4}$,
即:Tn<$\frac{3}{4}$.

点评 本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{an}是等比数列是解决本题的关键.求出过程中使用了裂项求和和放缩法证明不等式成立,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网