题目内容
数列{an},{bn},{cn}满足:bn=an-2an+1,cn=an+1+2an+2-2,n∈N*.
(1)若数列{an}是等差数列,求证:数列{bn}是等差数列;
(2)若数列{bn},{cn}都是等差数列,求证:数列{an}从第二项起为等差数列;
(3)若数列{bn}是等差数列,试判断当b1+a3=0时,数列{an}是否成等差数列?证明你的结论.
(1)若数列{an}是等差数列,求证:数列{bn}是等差数列;
(2)若数列{bn},{cn}都是等差数列,求证:数列{an}从第二项起为等差数列;
(3)若数列{bn}是等差数列,试判断当b1+a3=0时,数列{an}是否成等差数列?证明你的结论.
考点:数列递推式,等比关系的确定
专题:等差数列与等比数列
分析:(1)利用等差数列的定义只要证明bn+1-bn=一个常数即可;
(2)当n≥2时,cn-1=an+2an+1-2,bn=an-2an+1,可得an=
+1,an+1=
+1,只要证明an+1-an等于一个常数即可;
(3)解:数列{an}成等差数列.
解法1 设数列{bn}的公差为d',由bn=an-2an+1,利用“错位相减”可得2nbn+2n-1bn-1+…+2b1=2a1-2n+1an+1,设Tn=2b1+22b2…+2n-1bn-1+2nbn,可得Tn=-2b1-4(2n-1-1)d′+2n+1bn,进而得到an+1=
-(bn-d′),令n=2,得a3=
-(b2-d′)=
-b1,利用b1+a3=0,可得an+2-an+1=-(bn+1-d')+(bn-d')=-d',即可证明.
解法2 由bn=an-2an+1,b1+a3=0,令n=1,a1-2a2=-a3,即a1-2a2+a3=0,可得bn+1=an+1-2an+2,bn+2=an+2-2an+3,2bn+1-bn-bn+2=(2an+1-an-an+2)-2(2an+2-an+1-an+3),由于数列{bn}是等差数列,可得2bn+1-bn-bn+2=0,可得2an+1-an-an+2=2(2an+2-an+1-an+3),即可证明.
(2)当n≥2时,cn-1=an+2an+1-2,bn=an-2an+1,可得an=
| bn+cn-1 |
| 2 |
| bn+1+cn |
| 2 |
(3)解:数列{an}成等差数列.
解法1 设数列{bn}的公差为d',由bn=an-2an+1,利用“错位相减”可得2nbn+2n-1bn-1+…+2b1=2a1-2n+1an+1,设Tn=2b1+22b2…+2n-1bn-1+2nbn,可得Tn=-2b1-4(2n-1-1)d′+2n+1bn,进而得到an+1=
| 2a1+2b1-4d′ |
| 2n+1 |
| 2a1+2b1-4d′ |
| 23 |
| 2a1+2b1-4d′ |
| 23 |
解法2 由bn=an-2an+1,b1+a3=0,令n=1,a1-2a2=-a3,即a1-2a2+a3=0,可得bn+1=an+1-2an+2,bn+2=an+2-2an+3,2bn+1-bn-bn+2=(2an+1-an-an+2)-2(2an+2-an+1-an+3),由于数列{bn}是等差数列,可得2bn+1-bn-bn+2=0,可得2an+1-an-an+2=2(2an+2-an+1-an+3),即可证明.
解答:
证明:(1)设数列{an}的公差为d,
∵bn=an-2an+1,
∴bn+1-bn=(an+1-2an+2)-(an-2an+1)=(an+1-an)-2(an+2-an+1)=d-2d=-d,
∴数列{bn}是公差为-d的等差数列.
(2)当n≥2时,cn-1=an+2an+1-2,
∵bn=an-2an+1,
∴an=
+1,∴an+1=
+1,
∴an+1-an=
-
=
+
,
∵数列{bn},{cn}都是等差数列,
∴
+
为常数,
∴数列{an}从第二项起为等差数列.
(3)解:数列{an}成等差数列.
解法1 设数列{bn}的公差为d',
∵bn=an-2an+1,
∴2nbn=2nan-2n+1an+1,
∴2n-1bn-1=2n-1an-1-2nan,…,2b1=2a1-22a2,
∴2nbn+2n-1bn-1+…+2b1=2a1-2n+1an+1,
设Tn=2b1+22b2…+2n-1bn-1+2nbn,
∴2Tn=22b1+…+2nbn-1+2n+1bn,
两式相减得:-Tn=2b1+(22+…+2n-1+2n)d′-2n+1bn,
即Tn=-2b1-4(2n-1-1)d′+2n+1bn,
∴-2b1-4(2n-1-1)d′+2n+1bn=2a1-2n+1an+1,
∴2n+1an+1=2a1+2b1+4(2n-1-1)d′-2n+1bn=2a1+2b1-4d′-2n+1(bn-d′),
∴an+1=
-(bn-d′),
令n=2,得a3=
-(b2-d′)=
-b1,
∵b1+a3=0,
∴
=b1+a3=0,
∴2a1+2b1-4d′=0,
∴an+1=-(bn-d′),
∴an+2-an+1=-(bn+1-d′)+(bn-d′)=-d′,
∴数列{an}(n≥2)是公差为-d'的等差数列,
∵bn=an-2an+1,令n=1,a1-2a2=-a3,即a1-2a2+a3=0,
∴数列{an}是公差为-d'的等差数列.
解法2∵bn=an-2an+1,b1+a3=0,
令n=1,a1-2a2=-a3,即a1-2a2+a3=0,
∴bn+1=an+1-2an+2,bn+2=an+2-2an+3,
∴2bn+1-bn-bn+2=(2an+1-an-an+2)-2(2an+2-an+1-an+3),
∵数列{bn}是等差数列,
∴2bn+1-bn-bn+2=0,
∴2an+1-an-an+2=2(2an+2-an+1-an+3),
∵a1-2a2+a3=0,
∴2an+1-an-an+2=0,
∴数列{an}是等差数列.
∵bn=an-2an+1,
∴bn+1-bn=(an+1-2an+2)-(an-2an+1)=(an+1-an)-2(an+2-an+1)=d-2d=-d,
∴数列{bn}是公差为-d的等差数列.
(2)当n≥2时,cn-1=an+2an+1-2,
∵bn=an-2an+1,
∴an=
| bn+cn-1 |
| 2 |
| bn+1+cn |
| 2 |
∴an+1-an=
| bn+1+cn |
| 2 |
| bn+cn-1 |
| 2 |
| bn+1-bn |
| 2 |
| cn-cn-1 |
| 2 |
∵数列{bn},{cn}都是等差数列,
∴
| bn+1-bn |
| 2 |
| cn-cn-1 |
| 2 |
∴数列{an}从第二项起为等差数列.
(3)解:数列{an}成等差数列.
解法1 设数列{bn}的公差为d',
∵bn=an-2an+1,
∴2nbn=2nan-2n+1an+1,
∴2n-1bn-1=2n-1an-1-2nan,…,2b1=2a1-22a2,
∴2nbn+2n-1bn-1+…+2b1=2a1-2n+1an+1,
设Tn=2b1+22b2…+2n-1bn-1+2nbn,
∴2Tn=22b1+…+2nbn-1+2n+1bn,
两式相减得:-Tn=2b1+(22+…+2n-1+2n)d′-2n+1bn,
即Tn=-2b1-4(2n-1-1)d′+2n+1bn,
∴-2b1-4(2n-1-1)d′+2n+1bn=2a1-2n+1an+1,
∴2n+1an+1=2a1+2b1+4(2n-1-1)d′-2n+1bn=2a1+2b1-4d′-2n+1(bn-d′),
∴an+1=
| 2a1+2b1-4d′ |
| 2n+1 |
令n=2,得a3=
| 2a1+2b1-4d′ |
| 23 |
| 2a1+2b1-4d′ |
| 23 |
∵b1+a3=0,
∴
| 2a1+2b1-4d′ |
| 23 |
∴2a1+2b1-4d′=0,
∴an+1=-(bn-d′),
∴an+2-an+1=-(bn+1-d′)+(bn-d′)=-d′,
∴数列{an}(n≥2)是公差为-d'的等差数列,
∵bn=an-2an+1,令n=1,a1-2a2=-a3,即a1-2a2+a3=0,
∴数列{an}是公差为-d'的等差数列.
解法2∵bn=an-2an+1,b1+a3=0,
令n=1,a1-2a2=-a3,即a1-2a2+a3=0,
∴bn+1=an+1-2an+2,bn+2=an+2-2an+3,
∴2bn+1-bn-bn+2=(2an+1-an-an+2)-2(2an+2-an+1-an+3),
∵数列{bn}是等差数列,
∴2bn+1-bn-bn+2=0,
∴2an+1-an-an+2=2(2an+2-an+1-an+3),
∵a1-2a2+a3=0,
∴2an+1-an-an+2=0,
∴数列{an}是等差数列.
点评:本题考查了等差数列的定义及其通项公式,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
函数y=
的最大值是( )
|
| A、3 | B、4 | C、5 | D、6 |
图中所示的四个图形中正确的是( )
| A、 |
| B、 |
| C、 |
| D、 |