题目内容
已知Sn=
+
+
+…+
,若Sn=
,则n= .
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 9 |
| 10 |
考点:数列的求和
专题:等差数列与等比数列
分析:通过裂项法求出Sn,利用Sn=
,求解n即可.
| 9 |
| 10 |
解答:
解:∵
=
-
.
∴Sn=
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
.
∵Sn=
,
∴1-
=
,
解得n=9.
故答案为:9.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∵Sn=
| 9 |
| 10 |
∴1-
| 1 |
| n+1 |
| 9 |
| 10 |
解得n=9.
故答案为:9.
点评:本题考查数列求和裂项法的应用,属于基本知识的考查.
练习册系列答案
相关题目
下列不等式成立的是( )
| A、sin130°<sin140° |
| B、sin130°>sin140° |
| C、cos130°<cos140° |
| D、tan130°>tan140° |