题目内容
3.设函数f(x)=$\left\{\begin{array}{l}{1-sinπx,-2≤x<0}\\{(\frac{1}{9})^{x},x≥0}\end{array}\right.$,若关于x的方程f(x)-a=0有三个不等实根x1,x2,x3,且x1+x2+x3=-$\frac{5}{2}$,则a=$\frac{1}{3}$.分析 如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×$(-\frac{3}{2})$,又x1+x2+x3=-$\frac{5}{2}$,可得x3,代入a$a=(\frac{1}{9})^{{x}_{3}}$即可得出a.
解答 解:如图所示,画出函数f(x)的图象,![]()
不妨设x1<x2<x3,则x1+x2=2×$(-\frac{3}{2})$=-3,
又x1+x2+x3=-$\frac{5}{2}$,
∴x3=$\frac{1}{2}$.
∴a=$(\frac{1}{9})^{\frac{1}{2}}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查了函数的图象与性质、数形结合思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.命题“若a=-2b,则a2=4b2”的逆命题是( )
| A. | 若a≠-2b,则a2≠4b2 | B. | 若a2≠4b2,则a≠-2b | ||
| C. | 若a>-2b,则a2>4b2 | D. | 若a2=4b2,则a=-2b |
11.与α=$\frac{π}{12}$+2kπ(k∈Z)终边相同的角是( )
| A. | 345° | B. | 375° | C. | -$\frac{11}{12}$π | D. | $\frac{23}{12}$π |
8.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=( )
| A. | {1,2,5,6} | B. | {1,2,3,4} | C. | {2} | D. | {1} |
15.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$\sqrt{3}$,BC=$\sqrt{3}$,AC=1,∠ACB=90°,则此球的体积等于( )
| A. | $\frac{40\sqrt{10}}{3}$π | B. | $\frac{64\sqrt{2}}{3}$π | C. | $\frac{8\sqrt{2}}{3}$π | D. | 8π |
12.函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定义域是( )
| A. | (-∞,$\frac{1}{2}$) | B. | (-∞,0] | C. | (0,+∞) | D. | (-∞,0) |
13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$ |