题目内容

3.设函数f(x)=$\left\{\begin{array}{l}{1-sinπx,-2≤x<0}\\{(\frac{1}{9})^{x},x≥0}\end{array}\right.$,若关于x的方程f(x)-a=0有三个不等实根x1,x2,x3,且x1+x2+x3=-$\frac{5}{2}$,则a=$\frac{1}{3}$.

分析 如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×$(-\frac{3}{2})$,又x1+x2+x3=-$\frac{5}{2}$,可得x3,代入a$a=(\frac{1}{9})^{{x}_{3}}$即可得出a.

解答 解:如图所示,画出函数f(x)的图象,
不妨设x1<x2<x3,则x1+x2=2×$(-\frac{3}{2})$=-3,
又x1+x2+x3=-$\frac{5}{2}$,
∴x3=$\frac{1}{2}$.
∴a=$(\frac{1}{9})^{\frac{1}{2}}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了函数的图象与性质、数形结合思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网