题目内容
10.设$a={log}_{\frac{2}{5}}2,b={(\frac{1}{2})}^{\frac{1}{5}},c={2}^{\frac{2}{5}}$,则a,b,c的大小关系是( )| A. | c>b>a | B. | c>a>b | C. | a>b>c | D. | b>c>a |
分析 利用指数函数与对数函数的单调性即可得出.
解答 解:∵$a=lo{g}_{\frac{2}{5}}2$<0,0<$b=(\frac{1}{2})^{\frac{1}{5}}$<1,$c={2}^{\frac{2}{5}}$>1,
∴a<b<c,
故选:A.
点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.设平面区域D是由双曲线y2-$\frac{{x}^{2}}{4}$=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则x+y的最小值为( )
| A. | -1 | B. | 1 | C. | 0 | D. | 3 |
15.已知全集U=R,A={-1},B={x|lg(x2-2)=lgx},则( )
| A. | A⊆B | B. | A∪B=∅ | C. | A?B | D. | (∁UA)∩B={2} |
19.某地植被面积 x(公顷)与当地气温下降的度数y(℃)之间有如下的对应数据:
(1)请用最小二乘法求出y关于x的线性回归方程$\widehaty=\hat bx+\hat a$;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x(公顷) | 20 | 40 | 50 | 60 | 80 |
| y(℃) | 3 | 4 | 4 | 4 | 5 |
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
20.已知函数f(x)=(x+1)ln(x+1),若函数h(x)=2f(x-1)与y=x3-mx的图象在区间[$\frac{1}{e}$,e]上有2个不同的交点.则m的取值范围是( )
| A. | [1,2] | B. | (1,2+$\frac{1}{{e}^{2}}$] | C. | (1+$\frac{1}{e}$,3) | D. | (2,4+e] |