题目内容

9.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,则目标函数$z=\frac{y+1}{x+1}$的取值范围是(  )
A.$[{\frac{1}{2},\frac{5}{2}}]$B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.$[{\frac{5}{2},+∞})$

分析 由约束条件作出可行域,由$z=\frac{y+1}{x+1}$的几何意义,即可行域内的动点与定点P(-1,-1)连线的斜率求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$作出可行域如图,

A(1,0),
联立$\left\{\begin{array}{l}{x=1}\\{3x-y+1=0}\end{array}\right.$,解得B(1,4),
$z=\frac{y+1}{x+1}$的几何意义为可行域内的动点与定点P(-1,-1)连线的斜率,
∵${k}_{PA}=\frac{-1-0}{-1-1}=\frac{1}{2}$,${k}_{PB}=\frac{-1-4}{-1-1}=\frac{5}{2}$,
∴数$z=\frac{y+1}{x+1}$的取值范围是[$\frac{1}{2}$,$\frac{5}{2}$].
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网