题目内容
设f(x)=sin
x,则f(1)+f(2)+f(3)+…+f(13)的值为 .
| π | 6 |
分析:将x=1,2,…,13分别代入求出f(1),f(2),…,f(13)的值,即可求出之和.
解答:解:f(x)=sin
x,
当x=1时,f(1)=sin
=
;当x=2时,f(2)=sin
=
;当x=3时,f(3)=sin
=1;当x=4时,f(4)=sin
=
;当x=5时,f(5)=sin
=
;
当x=6时,f(6)=sinπ=0;当x=7时,f(7)=sin
=-
;当x=8时,f(8)=sin
=-
;当x=9时,f(9)=sin
=-1;当x=10时,f(10)=sin
=-
;
当x=11时,f(11)=sin
=-
;当x=12时,f(12)=sin2π=0;当x=13时,f(13)=sin
=
,
则f(1)+f(2)+f(3)+…+f(13)=
+
+1+
+
+0-
-
-1-
-
+0+
=
.
故答案为:
| π |
| 6 |
当x=1时,f(1)=sin
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 2 |
| 2π |
| 3 |
| ||
| 2 |
| 5π |
| 6 |
| 1 |
| 2 |
当x=6时,f(6)=sinπ=0;当x=7时,f(7)=sin
| 7π |
| 6 |
| 1 |
| 2 |
| 4π |
| 3 |
| ||
| 2 |
| 3π |
| 2 |
| 5π |
| 3 |
| ||
| 2 |
当x=11时,f(11)=sin
| 11π |
| 6 |
| 1 |
| 2 |
| 13π |
| 6 |
| 1 |
| 2 |
则f(1)+f(2)+f(3)+…+f(13)=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目