题目内容
设f(x)=sin(2x+| π |
| 6 |
(1)当m=0时,求f(x)在[0,
| π |
| 3 |
(2)若f(x)的最大值为
| 1 |
| 2 |
分析:(1)当m=0时,求f(x)=sin(2x+
),根据角的范围利用函数的单调性求出函数的最小值.
(2)把f(x)化为
sin(2x+?),于是f(x)max=
,令
=
,解得m的值.
| π |
| 6 |
(2)把f(x)化为
(m+
|
(m+
|
(m+
|
| 1 |
| 2 |
解答:解:(1)当m=0时,求f(x)=sin(2x+
),因为x∈[0,
],则2x+
∈[
π,
π],
所以fmin=
,此时x=0或
.
(2)令f(x)=sin(2x+
)+2msinxcosx=(m+
)sin2x+
cos2x=
sin(2x+?),
其中tan?=
,于是f(x)max=
,
令
=
,解得:m=-
.
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 1 |
| 6 |
| 5 |
| 6 |
所以fmin=
| 1 |
| 2 |
| π |
| 3 |
(2)令f(x)=sin(2x+
| π |
| 6 |
| ||
| 2 |
| 1 |
| 2 |
(m+
|
其中tan?=
| ||||
m+
|
(m+
|
令
(m+
|
| 1 |
| 2 |
| ||
| 2 |
点评:本题考查两角和的正弦公式,三角函数的最值,把f(x)化为
sin(2x+?)是解题的关键.
(m+
|
练习册系列答案
相关题目