题目内容
求证:对任意自然数n,总有
+
+
+…+
<3.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 2n-1 |
| 2n |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列,不等式的解法及应用
分析:直接利用错位相减法求出数列的和,则数列不等式可证.
解答:
证明:令Sn=
+
+
+…+
,
则
Sn=
+
+…+
+
,
作差得:
Sn=
+
+
+…+
-
=
+
-
=
-
-
,
∴Sn=3-
-
<3.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 2n-1 |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 8 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
作差得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n |
∴Sn=3-
| 1 |
| 2n-2 |
| 2n-1 |
| 2n-1 |
点评:本题是数列与不等式的综合题,考查了错位相减法求数列的前n项和,考查了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目