题目内容

16.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的中点,四棱锥D-ABCM的体积为V,求三棱锥E-ADM的体积.

分析 (1)由题意可得BM⊥AM,再由平面ADM⊥平面ABCM,结合面面垂直的性质可得BM⊥平面ADM,从而得到AD⊥BM;
(2)直接利用等体积法求得三棱锥E-ADM的体积.

解答 (1)证明:∵长方形ABCD中,AB=2AD,M为DC的中点,
∴AM=BM,则BM⊥AM,
∵平面ADM⊥平面ABCM,
平面ADM∩平面ABCM=AM,BM?平面ABCM,
∴BM⊥平面ADM,∵AD?平面ADM,
∴AD⊥BM;
(2)解:当E为DB的中点时,
∵${S}_{△MBC}=\frac{1}{2}{S}_{△MAB}$,
∴${V}_{E-ADM}=\frac{1}{2}{V}_{B-ADM}$=$\frac{1}{2}{V}_{D-ABM}$=$\frac{1}{2}×\frac{2}{3}{V}_{D-ABCM}=\frac{1}{3}{V}_{D-ABCM}$=$\frac{1}{3}V$.

点评 本题考查空间中直线与直线的位置关系,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网