题目内容
8.某同学证明不等式$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$的过程如下:要证$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需证$\sqrt{7}$+$\sqrt{5}$>$\sqrt{11}$+1,即证7+2$\sqrt{7×5}$+5>11+2$\sqrt{11}$+1,即证$\sqrt{35}$>$\sqrt{11}$,即证35>11.因为35>11成立,所以原不等式成立.这位同学使用的证明方法是( )| A. | 综合法 | B. | 分析法 | ||
| C. | 综合法,分析法结合使用 | D. | 其他证法 |
分析 分析证明过程,即可得到结论.
解答 解:利用分析法(执果索因),满足分析法的证明方法.
故证明过程是运用的分析法.
故选:B.
点评 本题考查分析法证明命题的方法,基本知识的考查.
练习册系列答案
相关题目
16.已知三个数1,a,9成等比数列,则圆锥曲线$\frac{x^2}{a}+\frac{y^2}{2}=1$的离心率为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$ |
13.如果a>b>0,那么下列不等式一定成立的是( )
| A. | |a|<|b| | B. | $\frac{1}{a}>\frac{1}{b}$ | C. | ${(\frac{1}{2})^a}>{(\frac{1}{2})^b}$ | D. | lna>lnb |
17.复数z满足(1+i)z=i+2,则z的虚部为( )
| A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{2}i$ |
18.下列命题正确的是( )
| A. | 命题“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$” | |
| B. | “函数f(x)=cosax-sinax的最小正周期为 π”是“a=2”的必要不充分条件 | |
| C. | x2+2x≥ax在x∈[1,2]时有解?(x2+2x)min≥(ax)min在x∈[1,2]时成立 | |
| D. | “平面向量$\overrightarrow a$与$\overrightarrow b$的夹角是钝角”的充分必要条件是“$\overrightarrow a$•$\overrightarrow b$<0” |