题目内容
平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为
(A) (B) (C) (D)
设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )
A.(,1)
B.∪(1,+∞)
C.()
D.(﹣∞,,+∞)
若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= .
选修4-4:坐标系与参数方程
在直角坐标系xy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a.
某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元.
将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为
(A)y=2sin(2x+)
(B)y=2sin(2x+)
(C)y=2sin(2x–)
(D)y=2sin(2x–)
选修44:坐标系与参数方程
在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.
如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是
(A)17π (B)18π (C)20π (D)28π
已知三棱锥的三视图如图所示,则它的外接球的体积为( )
A.π B.4π C. D.