题目内容

18.已知函数f(x)=lnx+ln(2-x),则(  )
A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称

分析 由已知中函数f(x)=lnx+ln(2-x),可得f(x)=f(2-x),进而可得函数图象的对称性.

解答 解:∵函数f(x)=lnx+ln(2-x),
∴f(2-x)=ln(2-x)+lnx,
即f(x)=f(2-x),
即y=f(x)的图象关于直线x=1对称,
故选:C.

点评 本题考查的知识点是函数的图象与图象变化,熟练掌握函数图象的对称性是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网