题目内容

18.曲线y=x2+ex在(0,1)处的切线与坐标轴所围三角形的面积等于$\frac{1}{2}$.

分析 欲切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后求出切线的方程,从而问题解决.

解答 解:依题意得y′=2x+ex
因此曲线y=x2+ex在(0,1)处的切线的斜率等于1,
相应的切线方程是y=x+1,
当x=0时,y=1,y=0时,x=-1,
∴切线与坐标轴所围成的三角形的面积为:
S=$\frac{1}{2}×1×1$=$\frac{1}{2}$.
故答案为$\frac{1}{2}$.

点评 本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网