题目内容
8.设f(x)是R上的偶函数,对?x∈R都有f(2+x)=-f(x),当x∈[0,1]时,f(x)=-x2+1;当x∈(1,2]时,f(x)=x-2.则f(x)=0的在[-1,5]上的所有根的和为10.分析 由f(x+2)=-f(x),可知f(x)是周期为4的周期函数. 再由f(x)是偶函数,当x∈[0,1]时,f(x)=-x2+1,可得函数在[-1,5]上的解析式,令f(x)=0,求出函数的根,求和即可.
解答 解:∵对任意的x∈R,都有f(2+x)=-f(x),
∴f(4+x)=f(x),
故f(x)是周期为4的周期函数.
∵函数f(x)是偶函数,
∴当x∈[-1,0]时,f(x)=-x2+1,
即x∈[-1,1]时,f(x)=-x2+1,①,
令-x2+1=0,解得:x=±1;
当1≤x≤3时,-1≤x-2≤1,
∵f(2+x)=-f(x),
∴f(x)=-f(x-2),
此时f(x)=-f(x-2)=-[-(x-2)2+1]=(x-2)2-1,②,
令(x-2)2-1=0,解得:x=0或x=2;
3≤x≤5时,-1≤x-4≤1,
此时f(x)=f(x-4)=-(x-4)2+1,③,
令-(x-4)2+1=0,解得:x=3或5,
故f(x)在[-1,5]上所有的根是:-1,0,1,2,3,5,
和是10,
故答案为:10.
点评 本题主要考查方程根的个数的判断,根据条件求出函数的周期性,利用函数函数的零点与方程的根的关系是解决本题的关键,体现了转化、数形结合的数学思想.
练习册系列答案
相关题目
13.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):
(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).
| A | 4 | 4 | 4.5 | 5 | 5.5 | 6 | 6 | |||
| B | 4.5 | 5 | 6 | 6.5 | 6.5 | 7 | 7 | 7.5 | ||
| C | 5 | 5 | 5.5 | 6 | 6 | 7 | 7 | 7.5 | 8 | 8 |
(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).
14.在复平面内,复数$z=\frac{2i}{1+i}$,则$\overline z$对应的点的坐标位于第( )象限.
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
13.
如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成的角的正弦值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{2}}}{4}$ |